AI技術で野生の七面鳥行動を監視(It’s a bird, it’s a drone, it’s both: AI tech monitors turkey behavior)

2025-11-21 ペンシルベニア州立大学(PennState)

Penn Stateの研究チームは、商用ドローンとコンピュータビジョン(AI)を組み合わせて、養鶏場における七面鳥(ターキー)の行動と健康状態を自動で監視できる手法を開発しました。広い商業農場では、動物の行動・健康を人手でモニタリングすることが手間とコストのかかる課題となっており、この研究ではドローンで若い七面鳥160羽を5日齢から32日齢まで撮影。撮影した映像から「給餌・飲水・休む・立つ・止まり木・群れ・羽ばたき」などの行動を手作業でラベル付けし、1万9000件超のデータセットを構築。YOLO(You Only Look Once)などの物体検出モデルを用し、最良モデルは総行動検出精度87%、特定行動の正答率98%という高性能を記録しました。この成果により、養鶏場での労力削減、持続的・非侵襲的な監視、スタッフ訓練と配置の削減という可能性が示されました。将来的には、規模の大きい運営環境での導入とリアルタイム・高頻度監視への拡張が期待されます。

AI技術で野生の七面鳥行動を監視(It’s a bird, it’s a drone, it’s both: AI tech monitors turkey behavior)
From the videos, the researchers took individual image frames and manually labeled the turkeys’ behaviors, including feeding, drinking, sitting, standing, perching, huddling and wing flapping.  Credit: Penn State. Creative Commons

<関連情報>

無人航空機とコンピュータービジョンを用いた七面鳥の行動の空中監視 Aerial monitoring of turkey behavior using unmanned aerial vehicles and computer vision

Giulio Calderone, Mireia Molins, Pietro Catania, John Boney, Enrico Casella
Poultry Science  Available online: 11 November 2025
DOI:https://doi.org/10.1016/j.psj.2025.106103

Abstract

Monitoring animal health and welfare in large commercial poultry houses is an essential aspect of management and productivity, but it is a time-consuming and labor-intensive task. Additionally, high employee turnover increases training costs and compromises effective and efficient operations. To address these challenges, this study explores the combined use of an Unmanned Aerial Vehicle (UAV) and computer vision technology as an innovative, non-invasive approach to support continuous behavioral monitoring and staff workload. Using a DJI Neo UAV equipped with a color camera, overhead videos of 160 Nicholas Select turkey toms from age 5 d to 32 d were acquired. Video frames were sampled and manually annotated to create a dataset for a You Only Look Once (YOLO) computer vision model capable of detecting and classifying eight key behaviors: feeding, drinking, sitting, standing, perching, huddling, wing flapping, and dead. The annotated dataset of 2388 images was divided into 70 % training, 15 % validation and 15 % testing. Among the tested configurations, the best model was selected based on the Mean Average Precision 50–95 (mAP50-95) performance on the validation set, corresponding to version 11 of the large YOLO model (YOLOv11-l) with an image resolution of 1280 pixels per side. Performance metrics for this model on the independent testing set were: precision = 0.90, recall = 0.87, F1-score = 0.89, and Mean Average Precision 50 (mAP50) = 0.89 using confidence threshold of 0.20. These results suggest that UAV-integrated computer vision could be applied to accurately classify turkey behaviors in commercial environments, improving welfare monitoring and management efficiency.

1201畜産
ad
ad
Follow
ad
タイトルとURLをコピーしました