2025-11-11 理化学研究所
Web要約 の発言:

データ駆動型アプローチによるハイドロゲルの設計方程式創出プロセス
[Editageの協力により作成]
<関連情報>
- https://www.riken.jp/press/2025/20251111_2/index.html
- https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00957
ハイドロゲルの膨潤と分子相互作用の統合記号回帰に基づくデータ駆動型処方 Data-Driven Formulation Based on Integrated Symbolic Regression of Hydrogel Swelling and Molecular Interactions
Masayuki Okada,Wenrui Zhu,Yoshifumi Amamoto,Jun Kikuchi
ACS Materials Letters Published:Published November 6, 2025
DOI:https://doi.org/10.1021/acsmaterialslett.5c00957
Abstract
Hydrogels offer promising solutions across various fields. However, understanding complex behaviors like swelling and ligand interaction requires multiperspective data, from functional groups to molecular dynamics. Single-perspective analyses often fall short, especially when ligand-induced selective adsorption occurs. This study presents a data-driven approach integrating TD-NMR, 1H–15N HSQC, 1H–13C HNCO with isotope-labeled peptides, RDKit descriptors, and DSC data. Using symbolic regression, we derived highly accurate, interpretable equations (e.g., swelling ratio accuracy = 1.0 on test set). This methodology reveals fundamental hydrogel mechanisms and provides a framework for rational design.


