衝突エネルギーでプラスチックを分解する新手法(New Method Uses Collisions to Break Down Plastic for Sustainable Recycling)

ad

2025-10-10 ジョージア工科大学 (Georgia Tech)

ジョージア工科大学の研究チームは、加熱や有害溶媒を用いずにプラスチックを分解できる新しいメカノケミカルリサイクル法を開発した。ポリエチレンテレフタレート(PET)樹脂を金属球とともに回転容器内で衝突させ、機械的エネルギーのみで化学結合を切断し、モノマーやオリゴマーへ効率的に分解することに成功。実験と分子動力学シミュレーションの比較により、分解効率を左右する衝突エネルギーの閾値を明らかにした。従来の熱分解法に比べ、常温・無溶媒で副生成物が少なく、エネルギー消費も大幅に低減できる。研究者は、この手法がプラスチック廃棄物の完全循環型再資源化を実現し、環境負荷の少ない次世代リサイクル技術の基盤になると期待している。成果は『Chem』誌に掲載された。

衝突エネルギーでプラスチックを分解する新手法(New Method Uses Collisions to Break Down Plastic for Sustainable Recycling)
The high impact between the metal balls in a ball mill reactor and the polymer surface is sufficient to momentarily liquefy the polymer and facilitate chemical reactions.

<関連情報>

ポリマーのメカノケミカルアップサイクリングにおける空間分解反応環境 Spatially resolved reaction environments in mechanochemical upcycling of polymers

Kinga Gołąbek, Yuchen Chang, Lauren R. Mellinger, Mariana V. Rodrigues, Cauê de Souza Coutinho Nogueira, Fabio B. Passos, Yutao Xing, Aline Ribeiro Passos, Mohammed H. Saffarini, Austin B. Isner, David S. Sholl, Carsten Sievers
Chem  Available online: 6 October 2025
DOI:https://doi.org/10.1016/j.chempr.2025.102754

Highlights

  • PET depolymerizes by reacting with NaOH under sufficiently strong mechanical impact
  • Crater morphology reveals zones of elastic and plastic deformation
  • Amorphization enhances accessibility of ester bonds for alkali depolymerization
  • Multiscale analysis enables kinetic modeling of mechanochemical processes

The bigger picture

Mechanochemical processes offer a promising approach to integrating solid feedstocks, such as waste plastics and biomass, into chemical plants. The complexity of reaction environments in ball mills has hindered predictive reactor design. Although recent studies highlight the potential of mechanochemistry, they focus on lab-scale reactions without addressing scalability. This work bridges this gap by exploring polymer upcycling through a combined approach: simulations with a material point method model and spatially resolved spectro-microscopic characterization of a single collision. This provides a fundamental understanding of mechanochemical reaction kinetics and enables bottom-up modeling of these processes across different scales.

Summary

Mechanochemical processing is an attractive and scalable approach for the upcycling of polymers. The complex and dynamic environment in ball milling, however, makes gaining insight into the physicochemical nature of the collisions driving mechanochemistry challenging, which, in turn, hampers the optimization of these processes. We used controlled single impacts followed by multiple spatially resolved analytical methods (focused ion beam microscopy, Raman spectro-microscopy, and small-angle X-ray scattering) and material point method simulations to gain unprecedented information about mechanochemical depolymerization of poly(ethylene terephthalate). These measurements highlight the contributions of plastic deformation, amorphization, and depolymerization during the transfer of kinetic energy in collisions relevant to ball mills and will enable reactor models based on fundamental kinetics.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました