アミノ酸水溶液によるCO2直接空気回収の可能性を解明(Researchers decode aqueous amino acid’s potential for direct air capture of CO2)

ad

2023-12-01 オークリッジ国立研究所(ORNL)

◆オークリッジ国立研究所の科学者たちは、大気中の二酸化炭素(CO2)を直接捕捉するプロセスであるDAC(直接エアキャプチャ)に関する理解を深めました。彼らは水溶性のアミノ酸であるグリシンを使用して基本的なCO2隔離のステップを調査し、高度な計算手法を組み合わせて液体溶液内のダイナミックな現象を探索しました。
◆研究では、水分子と反応物質の「連動したダンス」による非平衡溶媒効果の理解が、反応の速度や仕組みを正確に把握する上で不可欠であることが示されました。
◆研究者たちは、二酸化炭素が吸収される速度を評価する際に、自由エネルギーバリアだけに焦点を当てることでは完全な絵が描けないことを発見し、水の影響を考慮に入れたアプローチが効率的なCO2吸収と分離につながる可能性があることを示しました。

<関連情報>

グリシン水溶液によるCO2回収の反応機構と律速段階に関する第一原理自由エネルギー研究 An ab initio free energy study of the reaction mechanism and rate-limiting steps of CO2 capture by aqueous glycine

Xinyou Ma,Vyacheslav S. Bryantsev,Santanu Roy
Cell Reports Physical Science  Published:October 20, 2023
DOI:https://doi.org/10.1016/j.xcrp.2023.101642

Highlights

•Free energy landscapes and kinetics of CO2 capture by aqueous glycine are resolved
•Utility of transition state theory and nonequilibrium solvent effects are explored
•Zwitterion formation step governs the rate of CO2 reaction with glycinate
•Enhancing CO2 capture kinetics improves economic viability of the DAC technology

Summary

Aqueous amino acids are promising absorbents for direct air capture (DAC) of CO2. Herein, we investigate the possibility of kinetic control of CO2 absorption with aqueous anionic glycine (GLY) by employing extensive ab initio molecular dynamics simulations, free energy analysis, and reaction rate theory. We find that first GLY binds to CO2 by overcoming a barrier (7.4 kcal/mol) to form a zwitterion intermediate, which then releases a proton by overcoming a similar barrier. Despite the similarity in the barrier, zwitterion formation appears to be the rate-limiting step because it is two orders of magnitude slower (microseconds) than the proton release step. This is predominantly due to stronger nonequilibrium solvent effects for the former that cause many barrier-recrossing events and effectively slow down the reaction rate. Such a detailed fundamental understanding of the amino acid-based CO2-absorption mechanism and rates is key to improving the kinetic efficiency of DAC technology.

Graphical abstract

Figure thumbnail fx1

 

ad


0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました