AIで化学反応を高精度予測する新システムを開発(An MIT-developed AI system provides realistic predictions for a wide variety of chemical reactions)

2025-09-03 マサチューセッツ工科大学(MIT)

MITの研究チームは、化学反応を高精度に予測する生成AIモデル「FlowER」を開発した。従来のAIは質量や電子保存則を無視する出力を生じやすい課題があったが、FlowERは1970年代に考案されたウギのボンド-電子マトリックスを用いて、反応に関わる電子をすべて追跡し、保存則を保証する仕組みを導入した。モデルは特許データなど100万件超の反応を学習し、既存手法に比べて正確性と一般化性能が大幅に向上。特に質量保存や電子保存を担保しつつ反応経路を生成できる点が特徴である。すでにGitHubでオープンソース公開されており、創薬、材料開発、燃焼、電気化学など幅広い分野での応用が期待される。研究成果は化学予測分野におけるAI活用を次の段階へ進めるものと評価されている。

AIで化学反応を高精度予測する新システムを開発(An MIT-developed AI system provides realistic predictions for a wide variety of chemical reactions)
The FlowER (Flow matching for Electron Redistribution) system allows a researcher to explicitly keep track of all the electrons in a reaction to ensure that none are spuriously added or deleted in the process of predicting the outcome of a chemical reaction.
Credits:Image courtesy of the researchers.

<関連情報>

生成反応機構予測のための電子流動マッチング Electron flow matching for generative reaction mechanism prediction

Joonyoung F. Joung,Mun Hong Fong,Nicholas Casetti,Jordan P. Liles,Ne S. Dassanayake & Connor W. Coley
Nature  Published:20 August 2025
DOI:https://doi.org/10.1038/s41586-025-09426-9

Abstract

Central to our understanding of chemical reactivity is the principle of mass conservation1, which is fundamental for ensuring physical consistency, balancing equations and guiding reaction design. However, data-driven computational models2,3,4,5,6,7,8,9 for tasks such as reaction product prediction rarely abide by this most basic constraint10,11,12,13. Here we recast the problem of reaction prediction as a problem of electron redistribution using the modern deep generative framework of flow matching14,15,16, explicitly conserving both mass and electrons through the bond-electron (BE) matrix representation17,18. Our model, FlowER, overcomes limitations inherent in previous approaches by enforcing exact mass conservation, resolving hallucinatory failure modes, recovering mechanistic reaction sequences for unseen substrate scaffolds and generalizing effectively to out-of-domain reaction classes with extremely data-efficient fine-tuning. FlowER also enables downstream estimation of thermodynamic or kinetic feasibility and manifests a degree of chemical intuition in reaction prediction tasks. This inherently interpretable framework represents an important step in bridging the gap between predictive accuracy and mechanistic understanding in data-driven reaction outcome prediction.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました