熱伝導率が極めて高い液晶性ポリイミドの合成に成功~機械学習による効率的な分子設計で高機能材料開発を変革~

2025-07-24 東京科学大学

東京科学大学などの研究チームは、機械学習を活用し、従来よりも高い熱伝導率(最大1.26W/m・K)を持つ液晶性ポリイミドの開発に世界で初めて成功しました。高分子データベース「PoLyInfo」の情報を用いて構築したモデルで約11万種の候補から6種を選定・合成し、全てが液晶構造を形成し高熱伝導性を示すことを実証。分子の配向と剛直性が熱伝導率に影響することも判明し、高分子材料の設計に大きな革新をもたらす成果となりました。

熱伝導率が極めて高い液晶性ポリイミドの合成に成功~機械学習による効率的な分子設計で高機能材料開発を変革~図1.機械学習を用いた液晶性ポリイミドの分子設計

<関連情報>

機械学習を用いた高熱伝導率を有する液晶ポリマーの発見 Discovery of liquid crystalline polymers with high thermal conductivity using machine learning

Hayato Maeda,Stephen Wu,Rika Marui,Erina Yoshida,Kan Hatakeyama-Sato,Yuta Nabae,Shiori Nakagawa,Meguya Ryu,Ryohei Ishige,Yoh Noguchi,Yoshihiro Hayashi,Masashi Ishii,Isao Kuwajima,Felix Jiang,Xuan Thang Vu,Sven Ingebrandt,Masatoshi Tokita,Junko Morikawa,Ryo Yoshida & Teruaki Hayakawa
npj Computational Materials  Published:02 July 2025
DOI:https://doi.org/10.1038/s41524-025-01671-w

Abstract

Next-generation power electronics require efficient heat dissipation management, and molecular design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline polymers could potentially give rise to high thermal conductivity, but the molecular design of such polymers remains largely empirical. In this study, we developed a machine learning model that predicts with more than 96% accuracy whether liquid crystalline states will form based on the chemical structure of the polymer. By exploring the inverse mapping of this model, we identified a comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all polymers exhibiting calculated thermal conductivities within the range of 0.722–1.26 W m−1 K−1.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました