発酵ガスから化学原料へ~ほしいときにほしいだけ低温で~

2025-07-21 早稲田大学

早稲田大学とクラサスケミカルは、メタンと二酸化炭素を含む発酵ガス(バイオガス)から、化学原料である合成ガス(H₂+CO)を200℃以下の低温かつ加圧環境で効率的に製造する技術を世界で初めて開発した。従来法は800℃の高温と炭素析出の課題があったが、独自触媒(1wt%Ru/La₂Ce₂O₇)と表面イオニクスを活用することで、高転化率・安定性・炭素析出なしを同時に実現。エネルギー削減・小型反応器化にも貢献し、バイオガスの地域利用と脱炭素社会への活用が期待される。研究成果は『ACS Catalysis』誌に掲載。

発酵ガスから化学原料へ~ほしいときにほしいだけ低温で~
図 左が今回発見したスムーズに進む方法、右が炭素(coke)で汚れやすい従来の方法

<関連情報>

高圧下での炭素析出を抑制する電気的アシストによるメタンの低温乾式改質 Electrically Assisted Low-Temperature Dry Reforming of Methane Suppressing Carbon Deposition under High-Pressure Conditions

Clarence Sampson,Takumi Masuda,Taisuke Horiguchi,Saori Ichiguchi,Hiroshi Sampei,Hitoshi Matsubara,Shintaro Itagaki,Gen Inoue,and Yasushi Sekine
ACS Catalysis  Published: July 18, 2025
DOI:https://doi.org/10.1021/acscatal.5c03126

Abstract

Our approach to high-pressure dry reforming of methane (DRM) achieves synergistic performance enhancement via application of an electric field (EF) over a 1 wt % Ru/La2Ce2O7 (LCO) catalyst. Conventional DRM is adversely affected by compromised activity and catalyst stability under pressurization caused by unfavorable thermodynamics. In sharp contrast, EF-assisted DRM has achieved exceptional CH4/CO2 conversion. In fact, high H2/CO ratios show coke resistance at temperatures as low as 473 K, which exceeds the equilibrium conversion constraints observed for conventional DRM. Pressurization was found to further enhance EF-assisted DRM activity by increasing the surface coverage of adsorbates that facilitates surface protonics, which is a proton hopping mechanism that promotes CH4 dissociative adsorption at low temperatures. Raman measurements and TEM-EDX mapping results show remarkable suppression of carbon deposition and metal sintering as the cause of long-term durability of EF-assisted DRM. When elucidating the reaction mechanism, temperature dependence, and turnover frequency (TOF) investigations have indicated unconventional anti-Arrhenius behavior, particularly identifying the metal–support interface as the primary active site. Partial pressure-based kinetic studies and transient gas-switch test results suggest that CHxO species serve as key reaction intermediates capable of direct decomposition into H2 and CO. NNP-based structural optimization calculations identified CHO* as the most stable intermediate species formed through lattice oxygen interactions with CH4 dissociation. From C–H*, although oxidation into CHO* is kinetically favorable, dehydrogenation into C* is thermodynamically favorable. For rationalizing the distinct coke suppression shown by EF-assisted DRM, investigations of C–C* aggregation have revealed that C–H* formation grew increasingly more favorable over C–C* in the presence of high surface H concentrations. Granted that high H surface coverage was found in pressurized EF-assisted DRM, this growth indicates a potential H feedback mechanism that facilitates hydrogenation to C–H*, thereby suppressing coke formation.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました