宇都宮市における時間帯別・エリア別(1km四方区切り、344地域)のCO2排出係数データを公開

ad

2025-05-15 早稲田大学

早稲田大学スマート社会技術融合研究機構(ACROSS)は、宇都宮市内を1kmメッシュに区切った344地域について、時間帯別のCO₂排出係数データを公開した。スマートメータ統計データと太陽光発電量等を分離・解析し、地域内の自家消費を反映した実態に即した排出係数を算出。EV充電の時間・場所によるCO₂削減効果や最適利用時間の評価が可能となり、地域単位でのカーボンニュートラル戦略に貢献する。研究は内閣府SIPの支援を受けて推進。

宇都宮市における時間帯別・エリア別(1km四方区切り、344地域)のCO2排出係数データを公開
図1 スマートメータ統計データ分離手法の概念図

<関連情報>

宇都宮市における炭素濃度の時空間データセット
Spatio-Temporal Dataset of Carbon Intensity in Utsunomiya City, Japan

Sugano, Soma (Contact person),Fujimoto, Yu (Data curator),Ihara, Yuto (Data manager),Mitsuoka, Masataka (Data collector),Tanabe, Shin-ichi (Data manager),Hayashi, Yasuhiro (Data manager)
Zenodo  Published: April 28, 2025
DOI:https://doi.org/10.5281/zenodo.15253615

This dataset presents the spatio-temporal distribution of CO₂ emission factors associated with electricity consumption in Utsunomiya City, Tochigi Prefecture, Japan. Carbon intensity was calculated using aggregated electricity consumption data at the 1-km mesh level, without referencing individual consumers, to consider data privacy. The estimates incorporate photovoltaic (PV) generation and behind-the-meter (BTM) self-consumption, along with the temporal variation in the grid electricity mix.

The dataset provides lifecycle CO₂ emission factors (kg-CO₂/kWh) at a temporal resolution of 30 minutes and a spatial resolution of 1 km², covering 344 areas across the city for fiscal year 2022 (file: carbon_intensity_all_344mesh.csv). The first row of carbon_intensity_all_344mesh.csv contains the mesh IDs corresponding to each area. Geographical coordinates for each mesh are provided in meshcode.csv.

Please note that the smart meter data used in this study was purchased from the Secured Meter Data Sharing Association specifically for this research and cannot be redistributed.

By quantifying the intra-city variation in carbon intensity, this dataset aims to support applications such as the optimal allocation of distributed energy resources and the development of demand response strategies. Details of the carbon intensity calculation methodology are available in the following publication:
Soma Sugano et al., Quantifying spatio-temporal carbon intensity within a city using large-scale smart meter data: Unveiling the impact of behind-the-meter generation, Applied Energy, Volume 383, 2025, DOI: 10.1016/j.apenergy.2025.125373

1902環境測定
ad
ad
Follow
ad
タイトルとURLをコピーしました