電子の地図が決めていた、“渦”のサイズ ~世界最小スキルミオンの誕生メカニズムを解明~

ad

2025-05-09 東京大学,大阪大学,東京都立大学,北海道大学

東京大学物性研究所の研究チームは、磁性ナノ構造「スキルミオン」のサイズが、電子の軌道運動によって決定されることを明らかにしました。スキルミオンは、磁性体中に現れる渦状のスピン構造で、次世代の磁気メモリ素子への応用が期待されています。従来、スキルミオンのサイズ制御は困難とされてきましたが、本研究では、電子の軌道運動がスキルミオンのサイズを決定する主要因であることを示しました。この成果は、スキルミオンのサイズ制御技術の開発や、超高密度磁気メモリの実現に向けた重要な一歩となります。

電子の地図が決めていた、“渦”のサイズ ~世界最小スキルミオンの誕生メカニズムを解明~
「電子の地図」に刻まれた伝導電子の運動量によって、スキルミオンのサイズが決まる

<関連情報>

フェルミ面のネスティングによって誘起される擬ギャップとフェルミ・アークが中心対称性スキルミオン磁石に誘起される Pseudogap and Fermi arc induced by Fermi surface nesting in a centrosymmetric skyrmion magnet

Yuyang Dong, Yuto Kinoshita, Masayuki Ochi, Ryu Nakachi, […] , and Takeshi Kondo
Science  Published:8 May 2025

Editor’s summary

Skyrmions, whirlpools of magnetic spin that hold promise for spintronics applications, usually occur in materials that lack a center of symmetry. They have also been observed in centrosymmetric materials, where they can be as small as a few nanometers, but the mechanism for their formation is not well understood. Dong et al. used photoemission measurements to access the electronic structure of GdRu2Si2, a centrosymmetric material featuring a skyrmion phase. The researchers focused on the ground state from which the skyrmion phase arises. Photoemission revealed the emergence of the so-called Fermi arcs, as well as a pseudogap. These findings will help to distinguish between the various theories of skyrmion formation in this class of materials and may also lead to practical applications. —Jelena Stajic

Abstract

Skyrmions in noncentrosymmetric materials are believed to occur due to the Dzyaloshinskii-Moriya interaction. By contrast, the skyrmion formation mechanism in centrosymmetric materials remains elusive. Here, we reveal the intrinsic electronic structure of the centrosymmetric GdRu2Si2 by selectively measuring magnetic domains using angle-resolved photoemission spectroscopy (ARPES). We found robust Fermi surface (FS) nesting, consistent with the magnetic modulation q-vector detected by the previous resonant x-ray scattering measurements. The pseudogap opens at the nested FS portions, which vary for different magnetic domains. The anomalous pseudogap disconnects the FS to generate Fermi arcs with twofold symmetry. These results indicate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays a decisive role in generating the screw spin modulation responsible for the skyrmion formation in GdRu2Si2. Furthermore, we demonstrate the flexible nature of magnetism in GdRu2Si2 by manipulating magnetic domains with magnetic field and temperature cyclings, providing potential future applications for data storage and processing devices.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました