数理論理でAIアルゴリズムの内部を可視化(How Math Reveals the Bleeding Edge of AI)

ad

2025-05-05 パシフィック・ノースウェスト国立研究所 (PNNL)

パシフィック・ノースウエスト国立研究所(PNNL)の研究チームは、AIの内部構造を数理的に解析する手法を開発し、AIモデルの挙動や性能を理解・制御する新たな道を切り開きました。この研究では、AIモデルの学習過程や予測結果を数学的に可視化し、特に科学分野におけるAIの信頼性と透明性を向上させることを目的としています。PNNLの「Mega AI」プロジェクトでは、数百万件の科学文献やデータベースを解析し、AIが未知の科学的知見を発見できるよう支援しています。このアプローチは、AIと人間の協働による科学的発見の加速を目指しており、AIのブラックボックス性を克服するための重要な一歩とされています。

<関連情報>

機械と数学的突然変異: GNNを用いたQuiver突然変異クラスの特徴づけ Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes

Jesse He, Helen Jenne, Herman Chau, Davis Brown, Mark Raugas, Sara Billey, Henry Kvinge
arXiv  Submitted on 12 Nov 2024
DOI:https://doi.org/10.48550/arXiv.2411.07467

Abstract

Machine learning is becoming an increasingly valuable tool in mathematics, enabling one to identify subtle patterns across collections of examples so vast that they would be impossible for a single researcher to feasibly review and analyze. In this work, we use graph neural networks to investigate quiver mutation—an operation that transforms one quiver (or directed multigraph) into another—which is central to the theory of cluster algebras with deep connections to geometry, topology, and physics. In the study of cluster algebras, the question of mutation equivalence is of fundamental concern: given two quivers, can one efficiently determine if one quiver can be transformed into the other through a sequence of mutations? Currently, this question has only been resolved in specific cases. In this paper, we use graph neural networks and AI explainability techniques to discover mutation equivalence criteria for the previously unknown case of quivers of type D˜ n. Along the way, we also show that even without explicit training to do so, our model captures structure within its hidden representation that allows us to reconstruct known criteria from type Dn, adding to the growing evidence that modern machine learning models are capable of learning abstract and general rules from mathematical data.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました