前例のない自己修復ポリマー材料の開発(New Self-Healing Polymer Possesses A Quality Never Before Seen At Any Scale)

ad

2025-05-05 テキサスA&M大学

前例のない自己修復ポリマー材料の開発(New Self-Healing Polymer Possesses A Quality Never Before Seen At Any Scale)A self-healing polymer developed at Texas A&M could protect space vehicles from micrometeoroids by absorbing high-speed impacts and rapidly repairing itself. Credit: Texas A&M University College of Engineering

テキサスA&M大学の材料科学チームは、従来にない自己修復特性を持つ新しいポリマー「Diels-Alder Polymer(DAP)」を開発しました。このポリマーは、高速で飛来する微小隕石などの衝突を受けると、一時的に液体状態に変化して衝撃を吸収し、通過後すぐに固体に戻って元の形状を回復します。この特性により、衝突によって生じる穴は、実際の飛来物よりも小さく抑えられます。この現象は極低温かつナノスケールで観察されており、宇宙船の窓や衛星の外装など、宇宙空間での応用が期待されています。また、地上での軍事装備や防弾素材への展開も視野に入れられています。研究成果は『Materials Today』誌に掲載されました。

<関連情報>

超音速パンクヒール可能で衝撃に強い共有結合適応ネットワーク Supersonic puncture-healable and impact resistant covalent adaptive networks

Zhen Sang, Hongkyu Eoh, Kailu Xiao, Dmitry Kurouski, Wenpeng Shan, Jinho Hyon, Svetlana A. Sukhishvili, Edwin L. Thomas
Materials Today  Available online: 4 January 2025
DOI:https://doi.org/10.1016/j.mattod.2024.12.006

Abstract

The dynamic behavior of thin polymer films under high-rate deformation and at small length scales is quite different from that of macroscopic samples loaded quasi-statically. While self-healing of dynamic polymers is well documented for macroscopic samples under applied pressure, mild temperature, and prolonged times, self-healing at the nanoscale after extreme deformation at high rates is largely unexplored. We demonstrate the extensive puncture healing of furan/maleimide Diels-Alder polymer (DAP) covalent adaptive network (CAN) submicron thin films induced by supersonic micro-projectile impacts. For a given sample thickness to projectile size ratio, DAP submicron thin films display a significantly smaller perforation than glassy thermoplastics while showing adequate kinetic energy absorption. Post-mortem microscopic examination reveals efficient puncture healing that is enabled by spatiotemporal gradients in stress- and temperature-induced thermomechanical responses of DAP networks. These responses include a unique solid-to-liquid transition, in addition to viscoelasticity and viscoplasticity. Dissociation of DA bonds occurs due to adiabatic heating and high stresses. The partially dissociated network undergoes biaxial stretching until perforation with subsequent entropically-driven elastic recovery helping puncture closure. Infrared nanospectroscopy confirms that the chemical structure of DAP networks surrounding the puncture has recovered to that before the impact. The energy absorption is evaluated using in-situ imaging at nanosecond, micron-scale resolution. This work suggests molecular design principles for advanced self-healable, damage-tolerant, and energy-absorptive materials that withstand ballistic impacts.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました