機械学習を活用した薄膜成長の自動化へ(Moving to Autonomous Experimentation: Growing Thin Films with Machine Learning)

ad

2025-04-02 パシフィック・ノースウェスト国立研究所(PNNL)

パシフィック・ノースウエスト国立研究所(PNNL)の研究者たちは、機械学習を活用して薄膜材料の成長プロセスを自律的に最適化する新しい手法を開発しました。このアプローチでは、機械学習アルゴリズムが実験データをリアルタイムで分析し、最適な成長条件を予測します。これにより、従来の試行錯誤に依存する方法と比べて、効率的かつ迅速に高品質な薄膜を作製することが可能となります。この技術は、エレクトロニクスやエネルギー分野における新材料の開発を加速させると期待されています。

<関連情報>

分子線エピタキシー法による薄膜堆積中のRHEEDパターンの機械学習によるオンザフライ解析 Machine-learning-enabled on-the-fly analysis of RHEED patterns during thin film deposition by molecular beam epitaxy

Tiffany C. Kaspar;Sarah Akers;Henry W. Sprueill;Arman H. Ter-Petrosyan;Jenna A. Bilbrey;Derek Hopkins;Ajay Harilal;Jijo Christudasjustus;Patrick Gemperline;Ryan B. Comes
Journal of Vacuum Science and Technology A  Published:March 27 2025
DOI:https://doi.org/10.1116/6.0004493

機械学習を活用した薄膜成長の自動化へ(Moving to Autonomous Experimentation: Growing Thin Films with Machine Learning)

Author Notes

Thin film deposition is a fundamental technology for the discovery, optimization, and manufacturing of functional materials. Deposition by molecular beam epitaxy (MBE) typically employs reflection high-energy electron diffraction (RHEED) as a real-time in situ probe of the growing film. However, the state-of-the-art for RHEED analysis during deposition requires human observation. Here, we present an approach using machine learning (ML) methods to monitor, analyze, and interpret RHEED images on-the-fly during thin film deposition. In the analysis workflow, RHEED pattern images are collected at one frame per second and featurized using a pretrained deep convolutional neural network. The feature vectors are then statistically analyzed to identify changepoints; these changepoints can be related to changes in the deposition mode from initial film nucleation to a transition regime, smooth film deposition, and in some cases, an additional transition to a rough, islanded deposition regime. The feature vectors are additionally analyzed via graph analysis and community classification. The graph is quantified as a stabilization plot, and we show that inflection points in the stabilization plot correspond to changes in the growth regime. The full RHEED analysis workflow is termed RHAAPsody and includes data transfer and output to a visual dashboard. We demonstrate the functionality of RHAAPsody by analyzing the precaptured RHEED images from epitaxial depositions of anatase TiO2 on SrTiO3(001) and show that the analysis workflow can be executed in less than 1 s. Our approach shows promise as one component of ML-enabled real-time feedback control of the MBE deposition process.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました