高忠実度計算顕微鏡を開発 (Novel High-fidelity Computational Microscopy Developed for Clearer Imaging)

ad

2025-03-07 中国科学院 (CAS)

中国科学院の研究チームが、新しい計算顕微鏡法「特徴領域位相回復法(FD-PR)」を開発した。従来のピクセルベース手法とは異なり、画像の特徴領域を活用し、ノイズ低減や適応性向上を実現する。FD-PRは、全視野フーリエ・プティグラフィーでの高解像度イメージング、ノイズ低減効果、ホログラフィーにおける高品質な位相回復、大きな収差の盲回復に優れている。この手法は、計算顕微鏡分野における普遍的で効率的な位相回復技術として期待される。

<関連情報>

特徴領域位相検索による高忠実度計算顕微鏡法 High-Fidelity Computational Microscopy via Feature-Domain Phase Retrieval

Shuhe Zhang, An Pan, Hongbo Sun, Yidong Tan, Liangcai Cao
Advanced Science  Published: 22 February 2025
DOI:https://doi.org/10.1002/advs.202413975

高忠実度計算顕微鏡を開発 (Novel High-fidelity Computational Microscopy Developed for Clearer Imaging)

Abstract

Computational microscopy enhances the space-bandwidth product and corrects aberrations for high-fidelity imaging by reconstructing complex optical wavefronts. Phase retrieval, a core technique in computational microscopy, faces challenges maintaining consistency between physical and real-world imaging formation, as physical models idealize real phenomena. The discrepancy between ideal and actual imaging formation limits the application of computational microscopy especially in non-ideal situations. Here, the feature-domain consistency for achieving high-fidelity computational microscopy is introduced. Feature-domain consistency tells that certain features, such as edges, textures, or patterns of an image, remain invariant in different image transformations, degradations, or representations. Leveraging the feature-domain consistency, Feature-Domain Phase Retrieval (FD-PR) is proposed, a framework applicable to various computational microscopy. Instead of working directly with images’ pixel values, FD-PR uses image features to guide the reconstruction of optical wavefronts and takes advantage of invariance components of images against mismatches of physical models. Experimental studies, across diverse phase retrieval microscopic tasks, including coded/Fourier ptychography, inline holography, and aberration correction, demonstrate that FD-PR improves resolution by a factor of 1.5 and reduces noise levels by a factor of 2. The proposed framework can immediately benefit a wide range of computational microscopies, such as X-ray ptychography, diffraction tomography, and wavefront shaping.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました