機械学習と衛星画像が世界で最も重要な作物の保護に役立つ可能性(Machine learning and satellite imagery could help protect the world’s most important crops)

ad

2024-12-12 ノースカロライナ州立大学(NCState)

ノースカロライナ州立大学の研究チームは、衛星画像と機械学習を組み合わせることで、バングラデシュにおけるコメの生産性を迅速かつ正確にモデル化する手法を開発しました。従来の現地調査に基づく手法は時間と労力を要し、気候変動の影響を受けやすいバングラデシュでは迅速な対応が求められています。この新たなモデルは、2002年から2021年までの時系列衛星画像と現地データを組み合わせ、植生や成長条件、作物の水分量、土壌状態を評価することで、コメの生産性をより正確に推定します。これにより、政策決定者は輸出入や価格設定、気候変動に強いコメ品種の導入などの意思決定を迅速に行うことが可能となります。この手法は、世界中の主要作物の保護と食料安全保障の強化に寄与することが期待されています。

<関連情報>

食糧安全保障の推進 時系列衛星データと機械学習を用いた米の収量推定フレームワーク Advancing food security: Rice yield estimation framework using time-series satellite data & machine learning

Varun Tiwari ,Kelly Thorp,Mirela G. Tulbure,Joshua Gray,Mohammad Kamruzzaman,Timothy J. Krupnik,A. Sankarasubramanian,Marcelo Ardon
PLOS ONE  Published: December 12, 2024
DOI:https://doi.org/10.1371/journal.pone.0309982

機械学習と衛星画像が世界で最も重要な作物の保護に役立つ可能性(Machine learning and satellite imagery could help protect the world’s most important crops)

Abstract

Timely and accurately estimating rice yields is crucial for supporting food security management, agricultural policy development, and climate change adaptation in rice-producing countries such as Bangladesh. To address this need, this study introduced a workflow to enable timely and precise rice yield estimation at a sub-district scale (1,000-meter spatial resolution). However, a significant gap exists in the application of remote sensing methods for government-reported rice yield estimation for food security management at high spatial resolution. Current methods are limited to specific regions and primarily used for research, lacking integration into national reporting systems. Additionally, there is no consistent yearly boro rice yield map at a sub-district scale, hindering localized agricultural decision-making. This workflow leveraged MODIS and annual district-level yield data to train a random forest model for estimating boro rice yields at a 1,000-meter resolution from 2002 to 2021. The results revealed a mean percentage root mean square error (RMSE) of 8.07% and 12.96% when validation was conducted using reported district yields and crop-cut yield data, respectively. Additionally, the estimated yield of boro rice varies with an uncertainty range between 0.40 and 0.45 tons per hectare across Bangladesh. Furthermore, a trend analysis was performed on the estimated boro rice yield data from 2002 to 2021 using the modified Mann-Kendall trend test with a 95% confidence interval (p < 0.05). In Bangladesh, 23% of the rice area exhibits an increasing trend in boro rice yield, 0.11% shows a decreasing trend, and 76.51% of the area demonstrates no trend in rice yield. Given that this is the first attempt to estimate boro rice yield at 1,000-meter spatial resolution over two decades in Bangladesh, the estimated mid-season boro rice yield estimates are scalable across space and time, offering significant potential for strengthening food security management in Bangladesh. Furthermore, the proposed workflow can be easily applied to estimate rice yields in other regions worldwide.

0303宇宙環境利用
ad
ad
Follow
ad
タイトルとURLをコピーしました