近傍の超新星は暗黒物質の探索を終わらせるかもしれない(A nearby supernova could end the search for dark matter)

ad

2024-11-21 カリフォルニア大学バークレー校(UCB)

カリフォルニア大学バークレー校の天体物理学者は、近隣の超新星爆発が暗黒物質の有力候補であるアクシオンの検出に繋がる可能性を指摘しています。超新星のコア崩壊時、アクシオンが大量に生成され、強力な磁場内でガンマ線に変換されると予想されます。このガンマ線は、フェルミガンマ線宇宙望遠鏡が適切な方向を観測していれば検出可能であり、アクシオンの質量範囲を特定する手がかりとなります。ただし、超新星が近隣で発生する頻度は数十年に一度であり、望遠鏡がその方向を観測している確率は約10分の1とされています。

<関連情報>

超新星アクシオン、母星の磁場でガンマ線に変換される Supernova Axions Convert to Gamma Rays in Magnetic Fields of Progenitor Stars

Claudio Andrea Manzari, Yujin Park, Benjamin R. Safdi, and Inbar Savoray
Physical Review Letters  Published: 19 November, 2024
DOI:https://doi.org/10.1103/PhysRevLett.133.211002

近傍の超新星は暗黒物質の探索を終わらせるかもしれない(A nearby supernova could end the search for dark matter)

Abstract

It has long been established that axions could have been produced within the nascent proto-neutron star formed following the type II supernova SN1987A, escaped the star due to their weak interactions, and then converted to gamma rays in the Galactic magnetic fields; the nonobservation of a gamma-ray flash coincident with the neutrino burst leads to strong constraints on the axion-photon coupling for axion masses ≲10−10  eV. In this Letter, we use SN1987A to constrain higher mass axions, all the way to ∼10−3  eV, by accounting for axion production from the Primakoff process, nucleon bremsstrahlung, and pion conversion along with axion-photon conversion on the still-intact magnetic fields of the progenitor star. Moreover, we show that gamma-ray observations of the next Galactic supernova, leveraging the magnetic fields of the progenitor star, could detect quantum chromodynamics axions for masses above roughly 50  μ⁢eV, depending on the supernova. We propose a new full-sky gamma-ray satellite constellation that we call the GALactic AXion Instrument for Supernova (GALAXIS) to search for such future signals along with related signals from extragalactic neutron star mergers.

ダークマター・アクシオンの量子拡張探索 A quantum enhanced search for dark matter axions

K. M. Backes<,D. A. Palken,S. Al Kenany,B. M. Brubaker,S. B. Cahn,A. Droster,Gene C. Hilton,Sumita Ghosh,H. Jackson,S. K. Lamoreaux,A. F. Leder,K. W. Lehnert,S. M. Lewis,M. Malnou,R. H. Maruyama,N. M. Rapidis,M. Simanovskaia,Sukhman Singh,D. H. Speller,I. Urdinaran,Leila R. Vale,E. C. van Assendelft,K. van Bibber & H. Wang
Nature  Published:10 February 2021
DOI:https://doi.org/10.1038/s41586-021-03226-7

extended data figure 1

Abstract

The manipulation of quantum states of light1 holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty2,3. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge–parity) problem of quantum chromodynamics4 and the unknown nature of dark matter5,6,7. In dark matter axion searches, quantum uncertainty manifests as a fundamental noise source, limiting the measurement of the quadrature observables used for detection. Few dark matter searches have approached this limit3,8, and until now none has exceeded it. Here we use vacuum squeezing to circumvent the quantum limit in a search for dark matter. By preparing a microwave-frequency electromagnetic field in a squeezed state and near-noiselessly reading out only the squeezed quadrature9, we double the search rate for axions over a mass range favoured by some recent theoretical projections10,11. We find no evidence of dark matter within the axion rest energy windows of 16.96–17.12 and 17.14–17.28 microelectronvolts. Breaking through the quantum limit invites an era of fundamental physics searches in which noise reduction techniques yield unbounded benefit compared with the diminishing returns of approaching the quantum limit.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました