NRELが支援する研究努力は、遠くからハロゲン化物ペロブスカイトをねじる(NREL-Backed Research Effort Twists Halide Perovskites From a Distance)

ad

2024-10-24 米国国立再生可能エネルギー研究所(NREL)

米国エネルギー省のNRELとCHOISEが率いる研究チームが、新しいハライドペロブスカイト半導体のキラリティー制御技術を開発しました。この技術では、特定のキラル分子が表面から構造を「ねじり」、電子のスピン特性を制御します。従来と異なり、極低温や磁場を必要とせず、プロセスが迅速で柔軟です。この発見は、光学通信や3Dディスプレイなど、スピン制御を活かした先端デバイス開発に役立つと期待されています。

<関連情報>

低次元ハイブリッドハライド金属半導体における遠隔キラリティ移動 Remote chirality transfer in low-dimensional hybrid metal halide semiconductors

Md Azimul Haque,Andrew Grieder,Steven P. Harvey,Roman Brunecky,Jiselle Y. Ye,Bennett Addison,Junxiang Zhang,Yifan Dong,Yi Xie,Matthew P. Hautzinger,Heshan Hewa Walpitage,Kai Zhu,Jeffrey L. Blackburn,Zeev Valy Vardeny,David B. Mitzi,Joseph J. Berry,Seth R. Marder,Yuan Ping,Matthew C. Beard & Joseph M. Luther
Nature Chemistry  Published:25 October 2024
DOI:https://doi.org/10.1038/s41557-024-01662-2

NRELが支援する研究努力は、遠くからハロゲン化物ペロブスカイトをねじる(NREL-Backed Research Effort Twists Halide Perovskites From a Distance)

Abstract

In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10−2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.

キラル誘起スピン選択性が室温スピン発光ダイオードを可能にする Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode

Young-Hoon Kim, Yaxin Zhai, Haipeng Lu, Xin Pan, […], and Matthew C. Beard
Science  Published:12 Mar 2021
DOI:https://doi.org/10.1126/science.abf5291

Spin injection sans magnetism

Light-emitting diodes (LEDs) that emit circularly polarized light (spin-LEDs) have potential applications in in three-dimensional displays, bioencoding, and tomography. The requisite spin polarization of the charge carriers is usually achieved with ferromagnetic contacts and applied magnetic fields, but Kim et al. report on a room-temperature spin-LED that relies instead on a chiral-induced spin selectivity organic layer. This layer selectively injected spin-polarized holes into metal halide perovskite nanocrystals, where they radiatively recombined with unpolarized electrons with an efficiency of 2.6%.

Science, this issue p. 1129

Abstract

In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts. We used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrate a spin-LED that operates at room temperature without magnetic fields or ferromagnetic contacts. The CISS layer consists of oriented, self-assembled small chiral molecules within a layered organic-inorganic metal-halide hybrid semiconductor framework. The spin-LED achieves ±2.6% circularly polarized electroluminescence at room temperature.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました