地殻内の岩石の複雑さを探る科学者たち(Scientists explore the complexity of rocks within the Earth’s crust)

ad

2024-10-08 スイス連邦工科大学ローザンヌ校(EPFL)

EPFLの研究者チームは、地球の地殻深部にある超臨界貯留層のメカニズムに関する洞察を提供しました。彼らは、コンピュータシミュレーションと実験室での実験を通じて、深さ5〜8キロメートルに位置する岩石が流体を通す性質を持つことを明らかにしました。超臨界条件下での岩石の挙動を再現する新たな装置を使用し、岩石が延性を示す深部でも水が循環できることを確認。この発見は、地熱エネルギーの新たな可能性を示しています。

<関連情報>

脆性-延性遷移による浸透性分配と超臨界地熱貯留層への影響 Permeability partitioning through the brittle-to-ductile transition and its implications for supercritical geothermal reservoirs

Gabriel G. Meyer,Ghassan Shahin,Benoît Cordonnier & Marie Violay
Nature Communications  Published05 September 2024
DOIhttps://doi.org/10.1038/s41467-024-52092-0

地殻内の岩石の複雑さを探る科学者たち(Scientists explore the complexity of rocks within the Earth’s crust)

Abstract

Geothermal projects utilizing supercritical water (≥400 °C) could boost power output tenfold compared to conventional plants. However, these reservoirs commonly occur in crustal areas where rocks are semi-ductile or ductile, impeding large-scale fractures and cracking, and where hydraulic properties are largely unknown. Here, we explore the complex permeability of rocks under supercritical conditions using mechanical data from a gas-based triaxial apparatus, high-resolution synchrotron post-mortem 3D imagery, and finite element modeling. We report a first order control of strain partitioning on permeability. In the brittle regime, strain localizes on permeable faults without necessarily increasing sample apparent permeability. In the semi-ductile regime, distributed strain increases permeability both in deformation bands and the bulk, leading to a more than tenfold permeability increase. This study challenges the belief that the brittle-ductile transition (BDT) marks a cutoff for fluid circulation in the crust, demonstrating that permeability can develop in deforming semi-ductile rocks.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました