将来のエネルギーと気候への影響をシミュレートする画期的な生成機械学習モデルを発表(NREL Unveils Groundbreaking Generative Machine Learning Model To Simulate Future Energy-Climate Impacts)

ad

2024-04-10 米国国立再生可能エネルギー研究所(NREL)

気候変動による影響を考慮した高解像度の未来気候データが欠如している中、NRELの研究者たちはSup3rCCというオープンソースモデルを開発しました。このモデルは、風力や太陽光発電などの再生可能エネルギー資源に対する気候変動の影響を理解し、エネルギーシステムの計画や運用に役立てることができます。Sup3rCCは従来の手法より40倍速く高解像度のデータを生成し、エネルギーシステムの計画者やオペレーターに貴重な洞察を提供します。

<関連情報>

生成機械学習を用いて全球気候モデルデータから気候変動の影響を考慮した高解像度気象学 High-resolution meteorology with climate change impacts from global climate model data using generative machine learning

Grant Buster,Brandon N. Benton,Andrew Glaws & Ryan N. King
Nature Energy  Published:09 April 2024
DOI:https://doi.org/10.1038/s41560-024-01507-9

将来のエネルギーと気候への影響をシミュレートする画期的な生成機械学習モデルを発表(NREL Unveils Groundbreaking Generative Machine Learning Model To Simulate Future Energy-Climate Impacts)

Abstract

As renewable energy generation increases, the impacts of weather and climate on energy generation and demand become critical to the reliability of the energy system. However, these impacts are often overlooked. Global climate models (GCMs) can be used to understand possible changes to our climate, but their coarse resolution makes them difficult to use in energy system modelling. Here we present open-source generative machine learning methods that produce meteorological data at a nominal spatial resolution of 4 km at an hourly frequency based on inputs from 100 km daily-average GCM data. These methods run 40 times faster than traditional downscaling methods and produce data that have high-resolution spatial and temporal attributes similar to historical datasets. We demonstrate that these methods can be used to downscale projected changes in wind, solar and temperature variables across multiple GCMs including projections for more frequent low-wind and high-temperature events in the Eastern United States.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました