改良型ソフトマテリアルがより優れたバイオエレクトロニクスを約束すると研究者らが発表(Modified soft material promises better bioelectronics, researchers say)

ad

2024-02-08 ペンシルベニア州立大学(PennState)

ペンシルバニア州立大学の研究者らが共同で率いるチームが、既存の生体適合性のある材料を改良し、湿った環境で効率的に電気を伝導し、生体媒体内でイオン電流を送受信できるようにすることで、柔軟な生体電子デバイスの開発に向けて一歩を踏み出しました。その結果は、『Matter』誌に掲載されました。PEDOT:PSSなどの材料は、湿度に安定して伝導性を維持し、イオンと効率的に相互作用できるようになりました。

<関連情報>

静電自己組織化により、効率的な混合輸送と高性能OECTsを持つ構造的に安定化したPEDOT:PSSが得られる Electrostatic self-assembly yields a structurally stabilized PEDOT:PSS with efficient mixed transport and high-performance OECTs

Laine Taussig , Masoud Ghasemi , Sanggil Han , Albert L. Kwansa , Ruipeng Li , Scott T. Keene , Nathan Woodward , Yaroslava G. Yingling , George G. Malliaras , Enrique D. Gomez , Aram Amassian
Matter  Published: January 16, 2024
DOI:https://doi.org/10.1016/j.matt.2023.12.021

Progress and potential

A structurally stable form of the biocompatible mixed conductor PEDOT:PSS has been developed that can operate efficiently in wet environments without crosslinkers, making it ideally suited for bioelectronic applications. This material both conducts electricity and interacts with ions very efficiently and achieves state-of-the-art organic electrochemical transistors. Absence of crosslinkers allows PEDOT:PSS to achieve superior crystalline order, carrier mobility, and volumetric capacitance. The material’s structure is developed in solution via electrostatic self-assembly, and its multiscale hierarchy includes a co-crystalline phase that structurally embeds PSS and helps preserve the material’s structural integrity and mixed conductivity in wet environments. Given that PEDOT:PSS is transparent, flexible, stretchable, and conductive, the range of potential applications of this durable PEDOT:PSS likely extends well beyond the biomedical sector.

Summary

Organic electronics and organic electrochemical transistors (OECTs) are gaining importance for their potential to replicate complex biological processes of the human brain. Such devices require polymeric materials to efficiently transport and couple ionic and electronic charges in aqueous media, therefore demanding water-insoluble systems capable of efficient electronic and ionic conductions. This has created a fundamental stability-performance compromise for water-soluble conducting polymers such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), whereby stability has been achieved at the expense of electronic properties. Here, we demonstrate a breakthrough in structural stabilization of PEDOT:PSS through electrostatic self-assembly (ESA) that leads to the formation of an efficient mixed conductor in a hydrated state. Benefiting from the multiscale morphology control provided by ESA, PEDOT:PSS mixed conductors exhibit superior carrier mobility and high volumetric capacitance resulting in a state-of-the-art thin-film OECT figure of merit (μC∗ = 752.5 F/cmVs) in aqueous media, making this approach suitable for creating robust mixed conductors for bioelectronic applications and beyond.

Graphical abstract

ad


0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました