機械学習モデルが互いに教え合って分子特性を特定する(Machine Learning Models Teach Each Other to Identify Molecular Properties)

ad

2024-01-18 デューク大学(Duke)

◆デューク大学のバイオメディカルエンジニアは、新しい機械学習モデルの効果を向上させる手法を開発しました。2つの機械学習モデルを組み合わせ、データ収集と分析を分離することで、テクノロジーの制約を回避し、精度を損なうことなく、新しい治療法や他の材料に使用する分子を同定するための機械学習アルゴリズムの利用が容易になります。これにより、研究者は効果的な方法で機械学習アルゴリズムを使用できるようになります。

<関連情報>

分子データ科学における横並び学習 Yoked learning in molecular data science

Zhixiong Li, Yan Xiang, Yujing Wen, Daniel Reker
Artificial Intelligence in the Life Sciences
DOI:https://doi.org/10.1016/j.ailsci.2023.100089

機械学習モデルが互いに教え合って分子特性を特定する(Machine Learning Models Teach Each Other to Identify Molecular Properties)

Abstract

Active machine learning is an established and increasingly popular experimental design technique where the machine learning model can request additional data to improve the model’s predictive performance. It is generally assumed that this data is optimal for the machine learning model since it relies on the model’s predictions or model architecture and therefore cannot be transferred to other models. Inspired by research in pedagogy, we here introduce the concept of yoked machine learning where a second machine learning model learns from the data selected by another model. We found that in 48% of the benchmarked combinations, yoked learning performed similar or better than active learning. We analyze distinct cases in which yoked learning can improve active learning performance. In particular, we prototype yoked deep learning (YoDeL) where a classic machine learning model provides data to a deep neural network, thereby mitigating challenges of active deep learning such as slow refitting time per learning iteration and poor performance on small datasets. In summary, we expect the new concept of yoked (deep) learning to provide a competitive option to boost the performance of active learning and benefit from distinct capabilities of multiple machine learning models during data acquisition, training, and deployment.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました