ナノスケール分析が玄武岩の鉱化モデリングの重要な解答を与える(Nanoscale Analysis Provides Key Answers for Modeling Mineralization in Basalt)

ad

2023-12-21 パシフィック・ノースウェスト国立研究所(PNNL)

◆CO2を産業排出や大気から取り除き、地球の深層地下に安全に貯蔵する炭素鉱化技術が、温暖化対策と持続可能な地球のためにますます不可欠となっています。
◆太平洋北西部国立研究所(PNNL)の科学者たちは、超臨界CO2を玄武岩貯蔵層に永久に保存する方法を発見し、新しい手法「IL-TEM」を使用して鉱物と水を含む超臨界CO2の反応を観察しました。IL-TEMは貯蔵層モデルの向上に貢献し、商業的な炭素鉱化技術の展開に向けた大きな進展となります。

<関連情報>

同一位置透過型電子顕微鏡を用いた炭素鉱化中のナノスケールプロセスの解明 Resolving Nanoscale Processes during Carbon Mineralization Using Identical Location Transmission Electron Microscopy

Xiaoxu Li, Emily T. Nienhuis, Alexandra B. Nagurney, Quin R. S. Miller, Xin Zhang, and H. Todd Schaef
Environmental Science & Technology Letters  Published:December 5, 2023
DOI:https://doi.org/10.1021/acs.estlett.3c00699

Abstract

ナノスケール分析が玄武岩の鉱化モデリングの重要な解答を与える(Nanoscale Analysis Provides Key Answers for Modeling Mineralization in Basalt)

Basalt reservoirs offer the potential for carbon mineralization, aiding in achieving net-zero emissions. However, debates persist about microscopic crystallization mechanisms due to limited characterization techniques under high-temperature and pressure conditions. By using Identical Location Transmission Electron Microscopy (IL-TEM) and cryo-TEM, this study reveals nanoscale interfacial carbonation processes of forsterite and diopside nanoparticles in water-saturated supercritical carbon dioxide under realistic reservoir conditions. Both minerals undergo preferential metal cation dissolution into a thin water film, forming porous Si-rich amorphous layers, supporting the leached layer mechanism as the dominant mineral reactivity process. Diopside’s amorphous layer has lower porosity and growth rate relative to forsterite, likely related to the connectivity of silicate tetrahedra. Kinetically favorable nesquehonite and aragonite nanocrystals form on the amorphous layers. These findings support the development of accurate reservoir simulations and help enable commercial-scale carbon storage deployment.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました