量子コンピューターのエラーを消去する新しい方法(A New Way to Erase Quantum Computer Errors)

ad

2023-10-11 カリフォルニア工科大学(Caltech)

◆カリフォルニア工科大学を中心とする研究グループが、量子イレーサーと呼ばれる新しい方法を開発し、量子コンピュータのエラーを特定および修正できることを示しました。通常、量子コンピュータのエラーを見つけることは難しいが、この研究ではエラーを特定して消す方法を開発しました。
◆この方法は、量子コンピュータのアレイで使用される、電荷のないアルカリ土類中性原子を操作するもので、エラーが発生した場合、誤った原子が蛍光を発し、エラーの位置を特定できます。この研究は、量子コンピュータにおけるエラー検出と修正の新しい方法を提供し、量子コンピューティングの信頼性向上に寄与します。

<関連情報>

高忠実度リュードベリ量子シミュレータにおける消去変換 Erasure conversion in a high-fidelity Rydberg quantum simulator

Pascal Scholl,Adam L. Shaw,Richard Bing-Shiun Tsai,Ran Finkelstein,Joonhee Choi & Manuel Endres
Nature  Published:11 October 2023
DOI:https://doi.org/10.1038/s41586-023-06516-4

figure 1

Abstract

Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1 and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4 with impressive system sizes5,6 and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9,10,11,12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14 have lagged behind competitors15,16 and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19,20,21,22, we achieve a Bell state fidelity of ≥0.9971+10−13, which improves to ≥0.9985+7−12≥0.9985−12+7 when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22,23,24.

ad

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました