物理学者が磁気的に結合した励起子の証拠を発見(Physicists Find Evidence for Magnetically Bound Excitons)

ad

2023-10-05 カリフォルニア工科大学(Caltech)

◆カルフォルニア工科大学の研究者は、励起子と呼ばれる粒子を磁力で結びつける方法を初めて実験で確認しました。通常、ハバード励起子は電気的な力で結合しますが、特定の材料では磁気相互作用によって結合します。これにより、新しいハバード励起子関連の技術の開発に道を開く可能性があります。
◆研究では、光を使用して特定の材料内で励起子を生成し、その結合メカニズムを観察しました。この発見は、励起子の磁気特性を活用した新技術の可能性を示唆しています。

<関連情報>

光ドープされた反強磁性モット絶縁体中のハバード励起子流体 A Hubbard exciton fluid in a photo-doped antiferromagnetic Mott insulator

Omar Mehio,Xinwei Li,Honglie Ning,Zala Lenarčič,Yuchen Han,Michael Buchhold,Zach Porter,Nicholas J. Laurita,Stephen D. Wilson & David Hsieh
Nature Physics  Published:14 September 2023
DOI:https://doi.org/10.1038/s41567-023-02204-2

物理学者が磁気的に結合した励起子の証拠を発見(Physicists Find Evidence for Magnetically Bound Excitons)

Abstract

The undoped antiferromagnetic Mott insulator naturally has one charge carrier per lattice site. When it is doped with additional carriers, they are unstable to spin-fluctuation-mediated Cooper pairing as well as other unconventional types of charge, spin and orbital current ordering. Photo-excitation can produce charge carriers in the form of empty (holons) and doubly occupied (doublons) sites that may also exhibit charge instabilities. There is evidence that antiferromagnetic correlations enhance attractive interactions between holons and doublons, which can then form bound pairs known as Hubbard excitons, and that these might self-organize into an insulating Hubbard exciton fluid. However, this out-of-equilibrium phenomenon has not been experimentally detected. Here we report the transient formation of a Hubbard exciton fluid in the antiferromagnetic Mott insulator Sr2IrO4 using ultrafast terahertz conductivity. Following photo-excitation, we observe rapid spectral-weight transfer from a Drude metallic response to an insulating response. The latter is characterized by a finite-energy peak originating from intraexcitonic transitions, whose assignment is corroborated by our numerical simulations of an extended Hubbard model. The lifetime of the peak is short (approximately one picosecond) and scales exponentially with the Mott gap size, implying extremely strong coupling to magnon modes.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました