暑い夏の空気が新しいゲル装置で飲み水に変わる(Hot Summer Air Turns Into Drinking Water With New Gel Device)

ad

2023-09-11 テキサス大学オースチン校(UT Austin)

◆テキサス大学オースティン校の研究者は、太陽光のエネルギーを使用して湿度条件に関係なく、華氏104度(摂氏40度)以上の気温で大気中の水を飲み水に変える新しい分子エンジニアリングされたハイドロゲルを開発しました。
◆この装置は、外に設置するだけで水を生成し、特に水が不足している地域の人々にとって革命的な解決策となる可能性があります。現在、研究者たちはこの技術を商業製品に転用し、世界中で低コストかつ携帯可能なクリーンな飲用水の供給手段として利用できるようにするために取り組んでおり、エチオピアなどの国々にとっては生活を変える可能性があります。

<関連情報>

熱応答性ハイドロゲル中の水和を分子レベルで閉じ込め、効率的な大気中水分採取を実現。 Molecularly confined hydration in thermoresponsive hydrogels for efficient atmospheric water harvesting

Weixin Guan, Yaxuan Zhao, Chuxin Lei, and Guihua Yu
Proceedings of the National Academy of Sciences  Published:September 11, 2023
DOI:https://doi.org/10.1073/pnas.2308969120

Significance

With increasing global demand for freshwater and the concurrent dwindling of traditional water resources, it’s imperative to explore sustainable alternatives for water supply. Atmospheric water harvesting (AWH), a potential solution, faces challenges due to the energy-intensive release of captured water. Addressing this issue, our study introduces the concept of molecularly confined hydration in thermoresponsive hydrogels, enabling more efficient water release at lower temperatures. This technique, when coupled with photothermal absorbers, harnesses solar energy, bolstering the sustainability of AWH. This advancement contributes to our understanding of hydrogel design for AWH and signifies a crucial step in the global efforts to mitigate the intensifying water scarcity crisis.

Abstract

Water scarcity is a pressing global issue, requiring innovative solutions such as atmospheric water harvesting (AWH), which captures moisture from the air to provide potable water to many water-stressed areas. Thermoresponsive hydrogels, a class of temperature-sensitive polymers, demonstrate potential for AWH as matrices for hygroscopic components like salts predominantly due to their relatively energy-efficient desorption properties compared to other sorbents. However, challenges such as limited swelling capacity due to the salting-out effect and difficulty in more complete water release hinder the effectiveness of conventional hydrogel sorbents. To overcome these limitations, we introduce molecularly confined hydration in thermoresponsive hydrogels by employing a bifunctional polymeric network composed of hygroscopic zwitterionic moieties and thermoresponsive moieties. Here, we show that this approach ensures stable water uptake, enables water release at relatively low temperatures, and exhibits rapid sorption–desorption kinetics. Furthermore, by incorporating photothermal absorbers, the sorbent can achieve solar-driven AWH with comparable water release performance. This work advances the design of AWH sorbents by introducing molecularly confined hydration in thermoresponsive hydrogels, leading to a more efficient and sustainable approach to water harvesting. Our findings offer a potential solution for advanced sorbent design with comprehensive performance to mitigate the freshwater crisis.

ad

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました