若芽野菜の亜鉛によるバイオフォート化は、世界の「隠れた飢餓」を軽減する可能性がある。(Biofortification of microgreens with zinc could mitigate global ‘hidden hunger’)

ad

2023-05-03 ペンシルベニア州立大学(PennState)

◆研究チームが、栄養改良された種子から成長したマイクログリーンを摂取することが、グローバルな栄養失調の軽減に役立ち、人々の生存率を高めることができると結論づけた。
◆ペンシルバニア州立大学のチームは、ミネラルを含む育苗を行うための効果的な方法を調べ、食物繊維や栄養素を減らさずに若い植物に必要なミネラルを取り込むことができる方法を発見した。これにより、貧しい地域や災害後の地域でも、単純に種子を亜鉛溶液に浸すことで、栄養価の高いマイクログリーンを生産することができる。
◆マイクログリーンは、栄養価と抗酸化物質の含有量が高いことで知られ、地球規模の災害に直面する人々の生存確率を高めることができるとされる。

<関連情報>

エンドウおよびヒマワリのマイクログリーンにおける代替亜鉛源および濃度レベルを用いた種子栄養プライミングによる亜鉛のバイオフォート化
Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens

Pradip Poude, Francesco Di Gioia, Joshua D. Lambert and Erin L. Connolly
Frontiers in Plant Science  Published:17 April 2023
DOI:https://doi.org/10.3389/fpls.2023.1177844

若芽野菜の亜鉛によるバイオフォート化は、世界の「隠れた飢餓」を軽減する可能性がある。(Biofortification of microgreens with zinc could mitigate global ‘hidden hunger’)

Micronutrient deficiencies caused by malnutrition and hidden hunger are a growing concern worldwide, exacerbated by climate change, COVID-19, and conflicts. A potentially sustainable way to mitigate such challenges is the production of nutrient-dense crops through agronomic biofortification techniques. Among several potential target crops, microgreens are considered suitable for mineral biofortification because of their short growth cycle, high content of nutrients, and low level of anti-nutritional factors. A study was conducted to evaluate the potential of zinc (Zn) biofortification of pea and sunflower microgreens via seed nutri-priming, examining the effect of different Zn sources (Zn sulfate, Zn-EDTA, and Zn oxide nanoparticles) and concentrations (0, 25, 50, 100, and 200 ppm) on microgreen yield components; mineral content; phytochemical constituents such as total chlorophyll, carotenoids, flavonoids, anthocyanin, and total phenolic compounds; antioxidant activity; and antinutrient factors like phytic acid. Treatments were arranged in a completely randomized factorial block design with three replications. Seed soaked in a 200 ppm ZnSO4 solution resulted in higher Zn accumulation in both peas (126.1%) and sunflower microgreens (229.8%). However, an antagonistic effect on the accumulation of other micronutrients (Fe, Mn, and Cu) was seen only in pea microgreens. Even at high concentrations, seed soaking in Zn-EDTA did not effectively accumulate Zn in both microgreens’ species. ZnO increased the chlorophyll, total phenols, and antioxidant activities compared to Zn-EDTA. Seed soaking in ZnSO4 and ZnO solutions at higher concentrations resulted in a lower phytic acid/Zn molar ratio, suggesting the higher bioaccessibility of the biofortified Zn in both pea and sunflower microgreens. These results suggest that seed nutrient priming is feasible for enriching pea and sunflower microgreens with Zn. The most effective Zn source was ZnSO4, followed by ZnO. The optimal concentration of Zn fertilizer solution should be selected based on fertilizer source, target species, and desired Zn-enrichment level.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました