ゼロショット学習を用いたトウモロコシ穂軸の表現型解析フレームワークを開発(Scientists Develop Zero-Shot Learning Framework for Maize Cob Phenotyping)

2025-12-29 中国科学院(CAS)

中国科学院空天信息研究院を中心とする研究チームは、トウモロコシ穂軸(コブ)の形質計測を再学習なしで実現するゼロショット学習(ZSL)フレームワークを開発した。テキスト誘導型物体検出モデルGrounding DINO、軽量画像セグメンテーション、幾何形質抽出を統合し、品種や環境が異なっても高精度な検出・計測を可能にする。実験では検出精度98~100%、形質推定で相関係数0.95超、収量予測でR²最大0.93を達成した。スマートフォンなど汎用機器での現地計測やエッジデバイス実装にも対応し、省計算で育種・精密農業への応用が期待される。

<関連情報>

多様な環境におけるトウモロコシ穂軸の幾何学的形質の表現型解析のためのゼロショット学習 Zero-shot learning for phenotyping of maize cob geometric traits in diverse environments

Fangming Wu, Miao Zhang, Bingfang Wu, Mingxing Wang, Hongwei Zeng, Kangjian Jing, Mengxiao Li, Yan Zhao, Hang Zhao, Xingli Qin, Fuyou Tian, Lang Xia, Peng Yang
Smart Agricultural Technology  Available online: 18 November 2025
DOI:https://doi.org/10.1016/j.atech.2025.101643

ゼロショット学習を用いたトウモロコシ穂軸の表現型解析フレームワークを開発(Scientists Develop Zero-Shot Learning Framework for Maize Cob Phenotyping)

Abstract

Maize cob geometric traits are critical for breeding programs and yield estimation, yet traditional phenotyping methods remain labor-intensive, costly, and lack scalability. Existing deep learning approaches typically require model retraining or parameter adjustments for new varieties or environments, creating barriers for non-experts, users with limited resources, and field applications. To overcome limitations in data dependency, high costs, and model generalization, this study explores zero-shot learning (ZSL) framework that integrates Grounding DINO and a lightweight shape-corrected segment anything model (SAM) for maize cob segmentation and geometric traits estimation. To evaluate the performance of the ZSL method, extensive experiments were conducted on a public maize cob dataset from Peru and four self-collect datasets covering both laboratory and in-field conditions from China. The framework achieves 100 % detection accuracy in labs and 98 % in fields, with lightweight MobileSAM delivering 99.6 % accuracy for maize cob segmentation at optimized efficiency of 12.90 FPS. Morphological corrections remove distracting shapes to enhance the accuracy of segmentation results in the field scenarios. Estimated traits exhibit strong correlations with manual measurements (r = 0.958–0.987). The framework achieved a remarkable correlation (r = 0.95) between cob area and actual yield, validating its practical utility. This study demonstrates the feasibility of ZSL for maize cob phenotyping in laboratory and field environments, enabling the first fully zero-shot pipeline for accurate geometric trait extraction and yield estimation. This work provides a computationally efficient, generalizable solution that bridges laboratory precision with field applicability in maize phenomics.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました