日常カメラを作物解析ツールに転用(Seeing beyond the visible: Researchers turn everyday cameras into crop analysis tools)

2025-11-19 イリノイ大学

米 University of Illinois Urbana‑Champaign の研究チームは、普通のRGBカメラ(いわゆる日常用カメラ)だけで、作物の状態を示すマルチスペクトル/ハイパースペクトル画像を再構成できる技術を報告した。これにより、赤外線や近赤外線など特殊機器を使わずとも、葉の健康状態、水分ストレス、栄養状態など作物生育指標の定量的解析が可能になる。特別なセンサーや高価な機器が不要なため、これまでコストや敷居が高かったフィールドでの植物モニタリングを大幅に民主化できる可能性がある。実証研究では、日常的なカメラ画像からスペクトル情報を再構成し、従来の方法と比較可能な精度で作物分析ができることが確認されており、持続可能でスケーラブルな農業・植物生理学への応用が期待されている。

<関連情報>

Agro-HSR: ディープラーニングベースの画像再構成と品質予測のための、農業に特化した初の大規模ハイパースペクトルデータセット Agro-HSR: The first large-scale agricultural-focused hyperspectral dataset for deep learning-based image reconstruction and quality prediction

Ocean Monjur, Md.Toukir Ahmed, Girish Chowdhary, Mohammed Kamruzzaman
Computers and Electronics in Agriculture  Available online: 14 October 2025
DOI:https://doi.org/10.1016/j.compag.2025.111103

日常カメラを作物解析ツールに転用(Seeing beyond the visible: Researchers turn everyday cameras into crop analysis tools)

Highlights

  • Argo-HSR: First public agriculture-focused and largest HSI reconstruction benchmark.
  • Dataset includes 1322 paired HSI-RGB images with DMC, Brix, and Firmness attributes.
  • Restormer achieved the best reconstruction performance (PSNR: 36.68, RMSE: 0.0149)
  • Reconstructed spectra enabled competitive prediction of agricultural quality attributes.
  • Promotes accessible HSI research by reducing cost and complexity for agriculture.

Abstract

Hyperspectral imaging (HSI) has recently emerged as a valuable tool for various agricultural applications. However, the widespread adoption of hyperspectral imaging is hindered due to the high cost and complexity of collecting and processing hyperspectral images. To address this gap, we introduce Agro-HSR,1 a large-scale RGB to hyperspectral image reconstruction dataset of sweet potatoes, specifically curated to promote easy access to hyperspectral images for the agricultural community. Agro-HSR comprises 1322 pairs of RGB and hyperspectral image cubes from 790 samples across three sweet potato varieties. For 141 of these samples, the agro-product quality attributes are included in the dataset. Each hyperspectral image cube covers 31 evenly spaced bands within the wavelength range of 400–1000 nm. Benchmarks for hyperspectral image reconstruction were conducted to demonstrate the importance and applicability of Agro-HSR. These benchmarks evaluated the ability to predict critical quality parameters in sweet potatoes, including Brix, dry matter, and firmness, from reconstructed hyperspectral images. Agro-HSR enhances the accessibility of hyperspectral images and promotes opportunities for cross-domain research in deep learning and agricultural science, addressing critical challenges in assessing the quality of agro-products.

 

ウィンドウ適応型空間スペクトル注意変換器に基づくトウモロコシ生育状態監視のためのRGB画像からのマルチスペクトル画像再構成 Multispectral image reconstruction from RGB image for maize growth status monitoring based on window-adaptive spatial-spectral attention transformer

Di Song, Hong Sun, Esther Ngumbi, Mohammed Kamruzzaman
Computers and Electronics in Agriculture  Available online 4 October 2025
DOI:https://doi.org/10.1016/j.compag.2025.111103

Highlights

  • Argo-HSR: First public agriculture-focused and largest HSI reconstruction benchmark.
  • Dataset includes 1322 paired HSI-RGB images with DMC, Brix, and Firmness attributes.
  • Restormer achieved the best reconstruction performance (PSNR: 36.68, RMSE: 0.0149)
  • Reconstructed spectra enabled competitive prediction of agricultural quality attributes.
  • Promotes accessible HSI research by reducing cost and complexity for agriculture.

Abstract

Hyperspectral imaging (HSI) has recently emerged as a valuable tool for various agricultural applications. However, the widespread adoption of hyperspectral imaging is hindered due to the high cost and complexity of collecting and processing hyperspectral images. To address this gap, we introduce Agro-HSR,1 a large-scale RGB to hyperspectral image reconstruction dataset of sweet potatoes, specifically curated to promote easy access to hyperspectral images for the agricultural community. Agro-HSR comprises 1322 pairs of RGB and hyperspectral image cubes from 790 samples across three sweet potato varieties. For 141 of these samples, the agro-product quality attributes are included in the dataset. Each hyperspectral image cube covers 31 evenly spaced bands within the wavelength range of 400–1000 nm. Benchmarks for hyperspectral image reconstruction were conducted to demonstrate the importance and applicability of Agro-HSR. These benchmarks evaluated the ability to predict critical quality parameters in sweet potatoes, including Brix, dry matter, and firmness, from reconstructed hyperspectral images. Agro-HSR enhances the accessibility of hyperspectral images and promotes opportunities for cross-domain research in deep learning and agricultural science, addressing critical challenges in assessing the quality of agro-products.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました