SDGSAT-1衛星データを用いた都市持続可能性評価法の開発(Researchers Develop New Urban Sustainability Assessment Method Using SDGSAT-1 Satellite Data)

2025-08-22 中国科学院(CAS)

中国科学院航空情報研究所の研究チームは、『Remote Sensing of Environment』にて、SDGSAT-1衛星の高解像度データを活用した都市持続可能性評価の新手法を発表した。対象は中国の三大都市圏(京津冀=BTH、長江デルタ=YRD、粤港澳大湾区=GBA)であり、10m分解能の「Glimmer Imager」により、人間活動、人口集積、都市間連結性の詳細分析が可能となった。研究では都市発展度を測る「都市活動指数(CAI)」と人口集積効率を示す「人口活動指数(PAI)」を新たに提案し、さらに独自の解析法で都市間結合強度を抽出、夜間光の「フローネットワーク」を構築した。その結果、BTHとYRDでは行政区や機能分区に基づく結合パターンが顕著に見られ、BTHは北京都市計画と強く一致、YRDは省境界に沿った集積が支配的であった。一方、GBAは三地域の中で最も均衡的かつ強固な都市間連結を示し、協調的な都市発展モデルを反映していた。研究は、政策立案や都市計画に資する新たな分析ツールを提示し、SDGSAT-1の夜間高精度観測の独自価値を示した。

<関連情報>

中国都市圏におけるSDGSAT-1微光イメージャーデータを用いた人間活動検出に関する研究 A study on detection of human activity using SDGSAT-1 glimmer imager data over urban agglomerations in China

Lu Zhang, Huadong Guo, Dong Liang, Zhuoran Lv, Zilu Li, Yaqi Geng, Xuting Liu, Mingyang Lv, Changyong Dou
Remote Sensing of Environment  Available online 1 July 2025
DOI:https://doi.org/10.1016/j.rse.2025.114886

SDGSAT-1衛星データを用いた都市持続可能性評価法の開発(Researchers Develop New Urban Sustainability Assessment Method Using SDGSAT-1 Satellite Data)

Highlights

  • Introduced new indicators to express construction and development for urban agglomerations.
  • Designed a new method to describe the connections between cities based on SDGSAT-1 images.
  • Obtained and analyzed the spatial development patterns of three urban agglomerations in China.

Abstract

Sustainable Development Goal (SDG) 11 aims to make cities and human settlements inclusive, safe, resilient, and sustainable. Understanding urban agglomerations, as highly developed products of urbanization, is important for achieving SDG 11. The Sustainable Development Science Satellite (SDGSAT-1), launched in 2021, aims to characterize “human activity traces” at a fine scale to fill data gaps and address incomplete methods in the implementation of the United Nations 2030 Agenda for Sustainable Development. The satellite, with a 10 m glimmer imager, provides a new and valuable data source for research related to urban agglomerations. To better describe the degree of construction and development of urban agglomerations, we established two new indicators—the City Activity Index (CAI) and the Population Activity Index (PAI)—based on SDGSAT-1 glimmer imager data. Additionally, we proposed a novel method for extracting the strength of intercity connections using 10 m glimmer imager data to reflect the current status of city linkages. These methods were combined and applied in three urban agglomerations in China: Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The findings not only enhance our understanding of spatial patterns and resource flows within major Chinese urban agglomerations, but also provide actionable data support for urban planning, infrastructure development, and governance. The study fully demonstrates the advantages of SDGSAT-1 high-precision glimmer imager data in depicting urban development, and provides data support for achieving SDG 11.

0303宇宙環境利用
ad
ad
Follow
ad
タイトルとURLをコピーしました