相関材料中のプラズモン研究(Breaking Rules but Not Waves: Plasmons in Correlated Materials)

2025-08-20 米国国立再生可能エネルギー研究所(NREL)

米国NRELを中心とする国際研究チームは、「悪い金属」と呼ばれる高抵抗の相関電子材料でもプラズモンが長く伝播することを発見した(Science掲載)。対象はモリブデン化合物MoOCl₂で、従来は電子相関の乱れによりプラズモンは急速に減衰すると考えられていた。しかし実験では、光と結合した「プラズモン–ポラリトン(HPP)」が室温下で10サイクル以上安定して共振する様子が確認された。HPPは光と電子の混成状態であり、ナノスケールでの高分解能イメージングや次世代光学デバイス、センサー技術への応用が期待される。研究チームはこの安定性を材料特有の電子構造で説明しており、相関電子系の理解や量子光学応用に新たな道を開いた。

相関材料中のプラズモン研究(Breaking Rules but Not Waves: Plasmons in Correlated Materials)NREL researchers Swagata Acharya (left) and Mark van Schilfgaarde discuss their research on plasmon resilience in strongly correlated systems. Photo by Agata Bogucka, NREL

<関連情報>

悪い金属中の良いプラズモン Good plasmons in a bad metal

Francesco L. Ruta, Yinming Shao, Swagata Acharya, Anqi Mu, […] , and D. N. Basov
Science  Published:13 Feb 2025
DOI:https://doi.org/10.1126/science.adr5926

Editor’s summary

Plasmonics offers a route to shrink light wavelengths down to the nanoscale using collective electronic excitations. Intuitively, highly conducting metals are the materials of choice, providing for long plasmon lifetime. Ruta et al. looked at the so-called “bad metal” molybdenum oxide dichloride, in which electronic correlations give rise to high resistivity. Surprisingly, they observed plasmons with very long lifetimes. The unexpected finding of long-lifetime plasmons may provide a route to expanding the choice of materials for nanophotonic applications. —Ian S. Osborne

Abstract

Correlated metals may exhibit unusually high resistivity that increases linearly in temperature, breaking through the Mott-Ioffe-Regel bound, above which coherent quasiparticles are destroyed. The fate of collective charge excitations, or plasmons, in these systems is a subject of debate. Several studies have suggested that plasmons are overdamped, whereas other studies have detected propagating plasmons. In this work, we present direct nano-optical images of low-loss hyperbolic plasmon polaritons (HPPs) in the correlated van der Waals metal MoOCl2. HPPs are plasmon-photon modes that waveguide through extremely anisotropic media and are remarkably long-lived in MoOCl2. Photoemission data presented here reveal a highly anisotropic Fermi surface, reconstructed and made partly incoherent, likely through electronic interactions as explained by many-body theory. HPPs remain long-lived despite this, revealing previously unseen imprints of many-body effects on plasmonic collective modes.

0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました