BlueMemeと共同研究を進める九州大学研究グループ、複雑ネットワークを“グループ”から読み解く新技術を開発~国際学術誌に掲載、SNSや医療・化学分野での応用に期待~

2025-08-06 九州大学

九州大学の藤田アンドレ教授らは、BlueMemeと共同で、複雑ネットワークを「グループ間の関係性」から解析する新手法を開発。従来の1対1の接続ではなく、複数ノードを1つの単位とするハイパーグラフを用い、固有値解析に基づくパラメータ推定・モデル選択・構造比較法(ANOHVA)を確立。SNS、感染症、化学反応系など現実的な高次相互作用の理解に応用可能で、統計的に多様なシステムの比較・解析を可能にする。

BlueMemeと共同研究を進める九州大学研究グループ、複雑ネットワークを“グループ”から読み解く新技術を開発~国際学術誌に掲載、SNSや医療・化学分野での応用に期待~
赤い楕円(ハイパーエッジ)は「グループ的な関係性」を表しており、複数のノードが同時に関係し合う複雑な構造を可視化しています。従来の“1対1”のネットワークでは捉えきれない、現実に近いつながりを表現可能です。

<関連情報>

ハイパーグラフのための統計的メソッド:パラメーター推定器、モデル選択、および比較検定 Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test

Grover E C Guzman , André Fujita
Journal of Complex Networks  Published:02 August 2025
DOI:https://doi.org/10.1093/comnet/cnaf019

Abstract

Graphs have long been used to model complex systems, but real-world networks often exhibit fluctuations that challenge traditional graph-based methods. Random graph models and spectral techniques have been employed for statistical analysis. However, even these approaches are limited to dyadic relationships, whereas real-world systems often involve more complex interactions. Hypergraphs, which generalize graphs by allowing edges to connect multiple nodes, offer a more accurate representation of such complexity. Therefore, we propose a framework to statistically analyze real-world systems based on the hypergraph’s adjacency matrix spectrum. First, we introduce the Kullback–Leibler divergence to compare the spectra of two hypergraphs. We then develop statistical methods for hypergraph analysis, including a parameter estimator, a model selection approach, and a method to test whether two or more hypergraphs were generated by the same process (i.e. the same model and parameter set). Simulation experiments demonstrate the efficacy of our methods. Finally, we apply our approach to real-world hypergraphs as an illustrative example.

1504数理・情報
ad
ad
Follow
ad
タイトルとURLをコピーしました