新手法で「視覚トランスフォーマー」AIシステムの効率化を実現(New Method Improves Efficiency of ‘Vision Transformer’ AI Systems)

ad

2023-06-01 ノースカロライナ州立大学(NCState)

新手法で「視覚トランスフォーマー」AIシステムの効率化を実現(New Method Improves Efficiency of ‘Vision Transformer’ AI Systems)Image Credit: Ion Fet.

◆ビジョン・トランスフォーマー(ViT)は、画像中のオブジェクトを識別・分類するAI技術ですが、計算能力と意思決定の透明性に課題があります。研究者は、新しい手法「パッチ-クラスター・アテンション(PaCa)」を開発し、これらの課題に取り組みました。
◆PaCaは、画像のオブジェクトをより効率的に識別し、クラスタリング技術を使用して計算要件を削減します。また、クラスタリングによりモデルの解釈可能性も向上しました。研究者はPaCaを他のViTと比較し、全ての面で優れていることを確認しました。今後の課題は、より大規模なデータセットでのトレーニングを行い、PaCaを拡張することです。

<関連情報>

PaCa-ViT:ビジョントランスフォーマーにおけるパッチからクラスターアテンションを学習する。
PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers

Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, Tianfu Wu
arXiv  last revised :7 Apr 2023
DOI:https://doi.org/10.48550/arXiv.2203.11987

Vision Transformers (ViTs) are built on the assumption of treating image patches as “visual tokens” and learn patch-to-patch attention. The patch embedding based tokenizer has a semantic gap with respect to its counterpart, the textual tokenizer. The patch-to-patch attention suffers from the quadratic complexity issue, and also makes it non-trivial to explain learned ViTs. To address these issues in ViT, this paper proposes to learn Patch-to-Cluster attention (PaCa) in ViT. Queries in our PaCa-ViT starts with patches, while keys and values are directly based on clustering (with a predefined small number of clusters). The clusters are learned end-to-end, leading to better tokenizers and inducing joint clustering-for-attention and attention-for-clustering for better and interpretable models. The quadratic complexity is relaxed to linear complexity. The proposed PaCa module is used in designing efficient and interpretable ViT backbones and semantic segmentation head networks. In experiments, the proposed methods are tested on ImageNet-1k image classification, MS-COCO object detection and instance segmentation and MIT-ADE20k semantic segmentation. Compared with the prior art, it obtains better performance in all the three benchmarks than the SWin and the PVTs by significant margins in ImageNet-1k and MIT-ADE20k. It is also significantly more efficient than PVT models in MS-COCO and MIT-ADE20k due to the linear complexity. The learned clusters are semantically meaningful. Code and model checkpoints are available at this https URL.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました