2022-07-13 マサチューセッツ大学アマースト校
一般的な不活性金属微小電極と比較して、グラフェン微小電極の電解安定性は1,000倍以上向上しており、高性能な動電分析に最適であることがわかりました。
分離した分子をグラフェン微小電極に垂直な方向から微視的に検出し、同時に検出を校正する3次元マルチストリーム微量流体戦略を開発しました。
この研究で開発された新しいアプローチは、時間効率とサイズ効率を最大化したラボオンチップデバイスの作成に道を開くものだと、Pingは言っています。また、このアプローチは生体分子の分析にとどまらず、細胞や細菌などの微生物の分離、検出、刺激に利用できる可能性があります。
<関連情報>
- https://www.umass.edu/news/article/ping-lab-uses-worlds-thinnest-material-same-time-same-position-biomolecule-isolation
- https://pubs.acs.org/doi/full/10.1021/acsnano.2c03054
グラフェンを用いた高性能動電型集束・検出装置 Graphene-Enabled High-Performance Electrokinetic Focusing and Sensing
Xiao Fan, Xiaoyu Zhang and Jinglei Ping
ACS Nano Published:June 17, 2022
DOI:https://doi.org/10.1021/acsnano.2c03054
Abstract
Transverse isoelectric focusing, i.e., isoelectric focusing that is normal to the fluid-flow direction, is an electrokinetic method ideal for micro total analysis. However, a major challenge remains: There is no electrode system integrable in a microfluidic device to allow reliable transverse isoelectric focusing and electrokinetic sensing. Here, we overcome this barrier by developing devices that incorporate microelectrodes made of monolayer graphene. We find that the electrolysis stability over time for graphene microelectrodes is >103× improved compared to typical microfabricated inert-metal microelectrodes. Through transverse isoelectric focusing between graphene microelectrodes, within minutes, specific proteins can be separated and concentrated to scales of ∼100 μm. Based on the concentrating effect and the high optical transparency of graphene, we develop a three-dimensional multistream microfluidic strategy for label-free detection of the proteins at same processing position with a sensitivity that is ∼102× higher than those of the state-of-the-art label-free sensors. These results demonstrate the advantage of monolayer-graphene microelectrodes for high-performance electrokinetic analysis to allow lab-on-a-chips of maximal time and size efficiencies.