東北大学

高品質な酸化物半導体で量子計算に利用できる電子状態を作り出すことに成功 1601コンピュータ工学

高品質な酸化物半導体で量子計算に利用できる電子状態を作り出すことに成功

エラーの起こりにくい量子計算機用素子に新たな展望2018/09/15  東京大学,科学技術振興機構(JST),東北大学ポイント 高品質な酸化物半導体に強い磁場を加えることで、エラーが起こりにくい量子計算が可能とされる、特殊な電子状態を作り出...
水素イオンからヘリウムイオンへ、電磁波を介したエネルギーの輸送 0303宇宙環境利用

水素イオンからヘリウムイオンへ、電磁波を介したエネルギーの輸送

2018/09/07 国立研究開発法人宇宙航空研究開発機構,東京大学大学院理学系研究科,名古屋大学,東北大学地球周辺の宇宙空間において、人工衛星に障害を与えるほどの高エネルギーをどのようにして荷電粒子が獲得するのか。人工衛星による観測と新し...
人工知能でタンパク質を自動設計 1602ソフトウェア工学

人工知能でタンパク質を自動設計

様々な機能性タンパク質開発の加速に期待2018/08/31 東北大学,産業技術総合研究所,理化学研究所【発表のポイント】 人工知能によってタンパク質の機能改変を効率化する手法を開発 少数の実験データを人工知能に学習させることで、目的の機能を...
ad
根粒菌とマメ科植物のせめぎ合いのメカニズム 1202農芸化学

根粒菌とマメ科植物のせめぎ合いのメカニズム

根粒菌分泌タンパク質が共生を流産させる仕組みの発見2018/08/10 東北大学,農業・食品産業技術総合研究機構,鹿児島大学,九州大学【発表のポイント】 長年未解明だった特定のダイズ品種と特定の根粒菌株が共生できない現象(共生不和合性:注1...
鉄鋼材料や半導体の性能向上に貢献するホウ素の分析強度を3倍以上に向上させることに成功 0505化学装置及び設備

鉄鋼材料や半導体の性能向上に貢献するホウ素の分析強度を3倍以上に向上させることに成功

2018/08/08 量子科学技術研究開発機構,東北大学,株式会社島津製作所,日本電子株式会社発表のポイント 鉄鋼材料や半導体デバイスの性能を左右する微量なホウ素の分析強度向上 新たな分析装置を試作・実証、さらなる強度向上の可能性概要東北大...
プラズマ誕生の瞬間を観測 1701物理及び化学

プラズマ誕生の瞬間を観測

国際チームがX線自由電子レーザー照射によるプラズマ生成機構を解明2018/08/03 東北大学多元物質科学研究所,京都大学大学院理学研究科,広島大学大学院理学研究科,理化学研究所,高輝度光科学研究センター【研究のポイント】 高強度X線自由電...
細胞が情報物質を取り込む瞬間の撮影に成功! 0110情報・精密機器

細胞が情報物質を取り込む瞬間の撮影に成功!

生きた細胞の表面を「見る」革新的技術2018/07/18 京都大学  東北大学  日本医療研究開発機構概要京都大学大学院生命科学研究科 吉村成弘准教授、吉田藍子同博士課程学生(研究当時、現:北海道大学博士研究員)、東北大学学際科学フロンティ...
「浮きイネ」の仕組みと起源を解明 1202農芸化学

「浮きイネ」の仕組みと起源を解明

洪水に適応し、背丈を急激に伸長させて生き延びることができる「浮きイネ」を制御する鍵遺伝子を発見し、その分子機構と起源を明らかにした。
世界初、実用サイズのプロトン導電性セラミック燃料電池セル(PCFC)の作製に成功 0501セラミックス及び無機化学製品

世界初、実用サイズのプロトン導電性セラミック燃料電池セル(PCFC)の作製に成功

量産プロセスにも適用可能な拡散焼結技術により実現2018/07/04 新エネルギー・産業技術総合開発機構 産業技術総合研究所NEDO事業において、産業技術総合研究所は、世界で初めて実用サイズのプロトン導電性セラミック燃料電池セル(PCFC)...
有機超伝導体における光の増幅現象を発見 0502有機化学製品

有機超伝導体における光の増幅現象を発見

有機超伝導体に極めて強い光パルスを照射した瞬間、光が増幅される現象(誘導放出)が起こることを発見した。さらに、この誘導放出は、超伝導の発現の仕組みとも関係していることが明らかになった。
刃物のようにとがった物体でもつかめる柔軟ロボットハンドを開発 0109ロボット

刃物のようにとがった物体でもつかめる柔軟ロボットハンドを開発

とがった物体、複雑形状物や脆弱物体など、多様な物体をつかめる柔軟なロボットハンドを新規に開発した。
スピン流スイッチの動作原理を発見・実証 0403電子応用

スピン流スイッチの動作原理を発見・実証

スピントロニクスを利用したデバイスは、高速かつ不揮発なメモリーや、超高密度なハードディスクとして身近になりつつある。スピン流の流れやすさを制御するスピン流スイッチの原理を発見・実証した。
ad
タイトルとURLをコピーしました