東京大学

異常な「4価の鉄」の酸化物の謎を解明~ついに捉えた電子の不足した酸素イオンの存在~ 0501セラミックス及び無機化学製品

異常な「4価の鉄」の酸化物の謎を解明~ついに捉えた電子の不足した酸素イオンの存在~

2023-08-23 東京大学,理化学研究所,高輝度光科学研究センター発表のポイント◆鉄と酸素をつなぐ"リガンドホール"の空間分布を世界で初めて観測しました。◆放射光X線回折実験と独自に開発した精密解析手法によって、異常な4価の鉄イオンを含...
トポロジー✕機械学習で開く物性シミュレーション ~カタチからエネルギーをズバリと当てる新技術~ 1700応用理学一般

トポロジー✕機械学習で開く物性シミュレーション ~カタチからエネルギーをズバリと当てる新技術~

2023-08-22 大阪大学,科学技術振興機構ポイント 複雑なアモルファス構造の持つエネルギーを、トポロジカルデータ解析とシンプルな機械学習モデルの組み合わせで高精度に予測できることを発見した アモルファス構造を特徴付ける原子のつながり方...
フェロアキシャル結晶を用いて電場誘起磁気キラル二色性を実現~電場でも磁場でも光の吸収を制御することが可能に~ 1700応用理学一般

フェロアキシャル結晶を用いて電場誘起磁気キラル二色性を実現~電場でも磁場でも光の吸収を制御することが可能に~

2023-08-21 東京大学発表のポイント◆回転歪みに特徴付けられる構造を内包する結晶(フェロアキシャル結晶)に特有な磁気光学現象を提案しました。◆電場でも磁場でも光の吸収を制御することを可能とする非相反磁気光学現象(電場誘起磁気キラル二...
ad
ナノロッド状の構造を持つ赤色透明な水分解用の窒化タンタル光電極を開発~世界トップレベルの太陽光−水素変換効率10%を達成~ 1700応用理学一般

ナノロッド状の構造を持つ赤色透明な水分解用の窒化タンタル光電極を開発~世界トップレベルの太陽光−水素変換効率10%を達成~

2023-08-18 産業技術総合研究所人工光合成化学プロセス技術研究組合(ARPChem)と共同実施先である東京大学、産業技術総合研究所、宮崎大学、信州大学は、太陽光を利用して水を高い効率で分解して酸素を生成できる赤色透明な光電極※1の開...
トマトに世界的な流行を引き起こす新興ウイルスの 高感度診断技術の開発に成功 1202農芸化学

トマトに世界的な流行を引き起こす新興ウイルスの 高感度診断技術の開発に成功

2023-08-08 東京大学発表のポイント トマトなどの生産に壊滅的被害を与える新興ウイルスToMMVのLAMP診断技術の開発に世界で初めて成功しました。 従来法の課題であった専門技術・時間・金銭的な制約を克服し、誰でもどこでも短時間で診...
高性能ガラスシミュレーションモデルは現実を反映するか ~低温液体で現れた、予期せぬ構造化~ 1700応用理学一般

高性能ガラスシミュレーションモデルは現実を反映するか ~低温液体で現れた、予期せぬ構造化~

2023-08-08 東京大学○発表のポイント:◆シミュレーションでガラス転移の性質に迫るために、近年、特別なモデル液体が開発され、粒子交換を許すモンテカルロ法との組み合わせで、結晶化や相分離を伴わずにとてつもなく低温の液体状態に迫ることが...
イオンごとに水のダイナミクスへ与える影響が異なるのはなぜか~イオン溶液の挙動を統一的に説明~ 1701物理及び化学

イオンごとに水のダイナミクスへ与える影響が異なるのはなぜか~イオン溶液の挙動を統一的に説明~

2023-08-08 東京大学○発表のポイント:◆イオンと水の相互作用は、自然科学、工学分野において極めて重要であるにもかかわらず、イオンが水溶液中で水の構造やダイナミクスに与える影響が、イオン種に強く依存する物理的なメカニズムは未解明であ...
光に操られるスピンの超高速な動きを可視化する装置を開発~スピン流が光で発生する瞬間を捉えた~ 1700応用理学一般

光に操られるスピンの超高速な動きを可視化する装置を開発~スピン流が光で発生する瞬間を捉えた~

2023-08-08 東京大学,広島大学発表のポイント 物質に光を照射した際に電子が持つスピン(最も小さな磁気)の向きと運動量が、10兆分の1秒スケールという超高速で変化する様子を可視化する装置を開発した。 本装置をトポロジカル絶縁体に適用...
ゼオライト原子配列の直接観察に成功 ~新開発の超高感度電子顕微鏡法により最先端材料開発を加速~ 1700応用理学一般

ゼオライト原子配列の直接観察に成功 ~新開発の超高感度電子顕微鏡法により最先端材料開発を加速~

2023-08-03 東京大学発表のポイント◆ゼオライトは電子線で容易に構造が破壊されるため、従来の電子顕微鏡法では原子配列の観察は著しく困難であった。◆新開発の超高感度電子顕微鏡法により、ゼオライトの原子配列の直接観察に成功した。◆本計測...
スロー地震と普通の地震(ファスト地震)は何が違うのか? ~スケール法則の再評価による地震現象の統一的な解釈~ 1702地球物理及び地球化学

スロー地震と普通の地震(ファスト地震)は何が違うのか? ~スケール法則の再評価による地震現象の統一的な解釈~

2023-08-01 東京大学井出 哲(地球惑星科学専攻 教授)グレゴリー C. べローザ(米国スタンフォード大学 教授)発表のポイント スロー地震とファスト地震(普通の地震)の違いについて、より完全な解釈を提供した。 普通の地震こそが、実...
電子の波動関数操作により ピコ秒以下の超高速で磁化制御を実現~テラヘルツ周波数帯で動作する低消費電力スピンデバイスに向けて新機能を実証~ 1700応用理学一般

電子の波動関数操作により ピコ秒以下の超高速で磁化制御を実現~テラヘルツ周波数帯で動作する低消費電力スピンデバイスに向けて新機能を実証~

2023-08-01 東京大学発表のポイント◆強磁性の半導体量子井戸構造に非常に短いパルスレーザ光を照射し、600フェムト秒というピコ秒以下の超高速で瞬時に磁化を増大させることに初めて成功しました。◆パルスレーザ光の照射によって半導体量子井...
3 個の光パルスで様々な計算ができる 独自の光量子コンピュータを開発~日本発「究極の大規模光量子コンピュータ」のプロトタイプを実現~ 1601コンピュータ工学

3 個の光パルスで様々な計算ができる 独自の光量子コンピュータを開発~日本発「究極の大規模光量子コンピュータ」のプロトタイプを実現~

2023-07-26 東京大学発表のポイント◆3個の光パルス(3量子ビット相当)で計算ができる独自方式の光量子コンピュータの開発に成功。◆2017年に提案した「究極の大規模光量子コンピュータ」方式の小規模なプロトタイプに相当し、容易に光パル...
ad
タイトルとURLをコピーしました