分子科学研究所

放射光により原子の形を自在に変えることに成功~放射光による量子状態制御の応用~ 1700応用理学一般

放射光により原子の形を自在に変えることに成功~放射光による量子状態制御の応用~

アンジュレータという光源装置を二台用いて二つの放射光パルスを発生し、その時間差をアト秒の精度で精密に制御することにより、ヘリウム原子の二つの軌道を重ね合わせて、電子雲の向きや形を精密に操作することに成功した。
光学顕微鏡によるマルチカラー高速高精度1分子観察を実現 0110情報・精密機器

光学顕微鏡によるマルチカラー高速高精度1分子観察を実現

金、銀、金銀合金ナノ粒子を用いて、光学顕微鏡によるマルチカラー高速高精度生体1分子イメージングを実現し、複数の生体1分子の挙動を同時かつ高速に追跡可能にした。
1兆分の1秒で起こる超高速な磁性の変化を元素別に解明 ~レーザー励起磁化反転の鍵~ 1700応用理学一般

1兆分の1秒で起こる超高速な磁性の変化を元素別に解明 ~レーザー励起磁化反転の鍵~

鉄白金合金試料に対して X 線自由電子レーザーを用いた超高㏿磁気測定を行い、光照射によって試料の磁性が瞬間的(1兆分の1秒以下)に消失する現象を元素別に観測に成功した。超高㏿な磁性の変化が鉄が白金より高㏿に消磁されることを明らかにした。
ad
金属タンパク質の活性発現に必要な一酸化炭素を生合成する仕組み 0502有機化学製品

金属タンパク質の活性発現に必要な一酸化炭素を生合成する仕組み

金属酵素(ヒドロゲナーゼ)が活性を発現するための構造ユニットの組み上げに必須となる一酸化炭素が、生体内でどのようにして合成されているのかを明らかにした。
放射光による原子の量子状態制御に世界で初めて成功! 1700応用理学一般

放射光による原子の量子状態制御に世界で初めて成功!

原子の量子状態制御を放射光で実現することに世界で初めて成功した。レーザー光よりも短波長・高時間分解能化が容易であり、極端紫外線やX線を用いたより高度な量子状態制御への道をひらく研究成果。
回転分子モーターV1の化学力学エネルギー変換機構を解明(飯野グループ・飯田大学院生ら) 1700応用理学一般

回転分子モーターV1の化学力学エネルギー変換機構を解明(飯野グループ・飯田大学院生ら)

高速高精度な1分子解析を用い、回転分子モーターV1の化学力学エネルギー変換機構を解明することに成功した。類縁の回転分子モーターF1とは機構が大きく異なり、機構の違いはそれぞれが生体内で果たす役割の違いと密接に関係していることが示唆された。
有機太陽電池の電圧損失の抑制に成功 0401発送配変電

有機太陽電池の電圧損失の抑制に成功

結晶性の高い分子を用い、有機太陽電池の電圧損失を無機太陽電池と同等の水準まで抑制することに成功。有機太陽電池で高い開放端電圧を得るには、発電が起こるドナー/アクセプター界面近傍の3分子層以下の非常に薄い領域の結晶性が重要だと明らかにした。
高活性な白金サブナノクラスター触媒の創製と構造決定に成功 0104動力エネルギー

高活性な白金サブナノクラスター触媒の創製と構造決定に成功

白金原子6個のサブナノクラスターの酸素還元反応の触媒活性が、現行の白金標準触媒に比べ1.7倍程度高い質量活性となることを発見し、広域X線吸収微細構造の測定と密度汎関数理論計算により、活性の高い白金6量体の構造が双四面体であると明らかにした。
スピントロニクスの方法を活用しスピン液晶状態の特徴を初めて解明 0403電子応用

スピントロニクスの方法を活用しスピン液晶状態の特徴を初めて解明

スピントロニクス分野のスピン流による熱電効果を活用し、輸送測定でスピンネマティック(スピン液晶)磁性体に特有のマグノン分子の兆候を検出することに初めて成功した。
有機トランジスタで超伝導の条件を探る 0400電気電子一般

有機トランジスタで超伝導の条件を探る

強相関物質を用いて柔軟な有機トランジスタを作製し、一つの試料で電子の「数」と「動きやすさ」を同時に制御することで、超伝導の発現条件を明らかにした。
新コンセプト有機太陽電池によって高効率化への道筋を拓く 0401発送配変電

新コンセプト有機太陽電池によって高効率化への道筋を拓く

「水平交互多層接合」による新コンセプト有機太陽電池の動作に世界で初めて成功した。水平方向に光電流を取り出すため垂直方向の膜厚を限りなく厚くでき、種々の吸収波長領域を持つ、多様な有機半導体の組み合わせが行え、飛躍的な効率向上が望める。
ドープ有機半導体の電気伝導度を決定づける、鍵となる因子を発見 0403電子応用

ドープ有機半導体の電気伝導度を決定づける、鍵となる因子を発見

2019-02-05 自然科学研究機構研究の概要有機半導体は、柔軟で、曲げることのできる電子回路を、印刷技術で大量に作るためには欠かせない材料であり、既に、有機発光ダイオード(OLED)を用いたディスプレイ市場では成功を収めています。しかし...
ad
タイトルとURLをコピーしました