0403電子応用

キノコで動くリビングコンピューター (Powered by mushrooms, living computers are on the rise) 0403電子応用

キノコで動くリビングコンピューター (Powered by mushrooms, living computers are on the rise)

2025-10-24 アメリカ合衆国・オハイオ州立大学 (OSU)オハイオ州立大学の研究チームは、シイタケなどの食用キノコ由来の菌糸ネットワークを用いた有機メモリスタを開発し、低消費電力で脳型計算に適した「生きたコンピュータ」の可能性を示し...
物理学者がAIを活用しLED光制御を強化(Physicists employ AI labmates to supercharge LED light control) 0403電子応用

物理学者がAIを活用しLED光制御を強化(Physicists employ AI labmates to supercharge LED light control)

2026-01-20 サンディア国立研究所(SNL)米国のサンディア国立研究所の物理学者らは、AIを「研究室の共同研究者(ラボメイト)」として活用し、LED光の制御性能を飛躍的に高める手法を開発した。研究では、AIが実験データをリアルタイム...
光で操る「ナノ温度スイッチ」を実現~光の右回り・左回りで熱分布を書き換える~ 0403電子応用

光で操る「ナノ温度スイッチ」を実現~光の右回り・左回りで熱分布を書き換える~

2026-01-20 兵庫県立大学兵庫県立大学、東北大学、早稲田大学などの共同研究グループは、光の偏光の回転方向(右回り・左回り)を切り替えるだけで、ナノ構造表面の温度分布を大きく変えられる「ナノ温度スイッチ」を実現した。対象としたのは窒化...
ad
物質中の「磁石」をジグザグに整列させて電気の流れをコントロール~新しい電流制御で超小型・省エネ・高機能デバイスへの道を拓く~ 0403電子応用

物質中の「磁石」をジグザグに整列させて電気の流れをコントロール~新しい電流制御で超小型・省エネ・高機能デバイスへの道を拓く~

2026-01-16 日本原子力研究開発機構,東京大学,富山県立大学,東北大学日本原子力研究開発機構、東京大学、東北大学、富山県立大学の研究グループは、電子スピンがジグザグ状に整列した反強磁性金属において、外部磁場なしで電流が一方向に流れや...
散逸的な磁壁運動による創発電場の発生~磁壁の電流駆動における「摩擦」が生む巨大応答~ 0403電子応用

散逸的な磁壁運動による創発電場の発生~磁壁の電流駆動における「摩擦」が生む巨大応答~

2026-01-15 理化学研究所,東京大学,科学技術振興機構,ニューサウスウェールズ大学理化学研究所・東京大学などの国際共同研究グループは、磁性体中の磁壁を交流電流で振動させたとき、散逸(摩擦)を伴う磁壁運動によって量子力学的な「創発電場...
酸素分子の「スピン」が引き起こす分子配列の歪みを可視化~原子位置から磁性を分析する道が開ける~ 0403電子応用

酸素分子の「スピン」が引き起こす分子配列の歪みを可視化~原子位置から磁性を分析する道が開ける~

2026-01-15 東京大学,北海道大学東京大学と北海道大学の研究グループは、非接触原子間力顕微鏡(AFM)を用いて、銀基板上に吸着した酸素分子(O₂)単分子層を原子レベルで非破壊観察し、分子が持つスピンに起因する分子配列の歪みを実空間で...
シリコンに注入した水素が自由電子を生成するメカニズムを世界で初めて解明~シリコンパワー半導体の電子濃度制御を高度化し、電力損失低減に貢献~ 0403電子応用

シリコンに注入した水素が自由電子を生成するメカニズムを世界で初めて解明~シリコンパワー半導体の電子濃度制御を高度化し、電力損失低減に貢献~

2026-01-14 東京科学大学東京科学大学(Science Tokyo)、三菱電機、筑波大学、Quemixの4者は、シリコンに注入した水素が特定欠陥(I4欠陥=格子間シリコン対由来)と結合することで自由電子を生成する機構を世界で初めて解...
アルゴンヌとインテル、シリコン量子プロセッサ共同開発(Argonne launches silicon quantum processor collaboration with Intel) 0403電子応用

アルゴンヌとインテル、シリコン量子プロセッサ共同開発(Argonne launches silicon quantum processor collaboration with Intel)

2026-01-06 アルゴンヌ国立研究所(ANL)米国エネルギー省(DOE)傘下のQ-NEXT国立量子情報科学研究センターが主導し、Argonne National LaboratoryとIntelが協力して、シリコン量子ドットに基づく1...
シナプスの機能をナノサイズの磁気メモリスタで模倣~脳の機能をハードウエアで模擬するブレインモルフィックシステムへの応用に期待~ 0403電子応用

シナプスの機能をナノサイズの磁気メモリスタで模倣~脳の機能をハードウエアで模擬するブレインモルフィックシステムへの応用に期待~

2026-01-09 産業技術総合研究所産総研と物質・材料研究機構の研究チームは、鉄–マンガン基合金の磁性超薄膜を用いたナノサイズ磁気メモリスタを開発し、脳のシナプス機能の模倣に成功した。熱処理によりスピノーダル分解が自発的に起き、磁気記憶...
平面光学の予期せぬブレークスルー―シリカメタ表面の可能性を発見(An unexpected breakthrough in flat optics) 0403電子応用

平面光学の予期せぬブレークスルー―シリカメタ表面の可能性を発見(An unexpected breakthrough in flat optics)

2026-01-08 ハーバード大学ハーバード大学応用科学・工学スクール(SEAS)の研究チームは、フラットオプティクス(平面光学)分野で予想外のブレークスルーを達成した。従来、メタサーフェスと呼ばれる超薄型光学素子は、設計波長や入射条件が...
強誘電体材料がデータ記録の可能性を拡大(Ferroelectric materials boost data storage potential) 0403電子応用

強誘電体材料がデータ記録の可能性を拡大(Ferroelectric materials boost data storage potential)

2026-01-05 オークリッジ国立研究所(ORNL)米国オークリッジ国立研究所(ORNL)の研究チームは、強誘電体材料を用いて次世代データ記憶容量を大幅に高める可能性を示した。強誘電体は外部電場によって分極状態を反転でき、その状態を保持...
強誘電トンネル接合メモリーのTER比は微細化により向上~次世代不揮発メモリーの高性能化に貢献~ 0403電子応用

強誘電トンネル接合メモリーのTER比は微細化により向上~次世代不揮発メモリーの高性能化に貢献~

2026-01-07 東京科学大学,科学技術振興機構東京科学大学総合研究院フロンティア材料研究所の真島豊教授らの研究グループは、次世代不揮発性メモリーとして注目される強誘電トンネル接合(FTJ)において、素子の微細化によりトンネル電気抵抗効...
ad
タイトルとURLをコピーしました