量子力学を用いて氷の隠された化学構造を解明(Using quantum mechanics, researchers crack the hidden chemistry of ice)

2025-12-22 シカゴ大学

研究チーム(シカゴ大学分子工学・ICTP共同)は、量子力学に基づくコンピュータシミュレーションを使い、氷が紫外線(UV)光と相互作用する際の化学変化の仕組みを初めて詳細に明らかにした。過去の実験では、UV照射時間によって氷の吸収スペクトルが変化し、その原因となる化学プロセスが長年の謎だった。研究では、完璧な結晶構造の氷だけでなく、水分子の欠損(空孔)水酸化物イオンの導入、Bjerrum欠陥(水素結合規則の乱れ)といった局所的な構造欠陥を持つ氷を個別にシミュレーションしたところ、欠陥ごとに異なる光吸収の“指紋”が生じることを発見した。また、UV光によって水分子が分解し、ヒドロニウムイオンや水酸基ラジカル、自由電子が生成され、欠陥により電子の振る舞いが変わることも示した。これらの結果は、長年の実験結果を定性的に説明するとともに、永久凍土の融解に伴う温室効果ガス放出の予測や、氷に覆われた惑星・衛星の化学過程理解にもつながる可能性がある。さらなる実験的検証も進められている。

量子力学を用いて氷の隠された化学構造を解明(Using quantum mechanics, researchers crack the hidden chemistry of ice)
Image courtesy of the Collection of Pablo Clemente-Colon, chief scientist National Ice Center

<関連情報>

欠陥の作用:氷の光物理学と光化学の形成 Defects at play: Shaping the photophysics and photochemistry of ice

Marta Monti, Yu Jin, Gonzalo Díaz Mirón, +3 , and Ali Hassanali
Proceedings of the National Academy of Sciences  Published:November 20, 2025
DOI:https://doi.org/10.1073/pnas.2516805122

Significance

The interaction of ultraviolet (UV) light with ice drives fundamental atmospheric and planetary processes. Yet, the molecular transformations occurring in ice upon UV absorption and emission remain poorly understood. In this study, we employ advanced electronic structure calculations of ground and excited states to reveal that lattice defects play a central role in controlling the formation and relaxation of photoproducts in ice. We show how vacancies, ionic species, and topological defects influence the characteristic optical features of ice. Our findings offer insights into the microscopic modifications that light induces in ice, paving the way for experiments to probe these phenomena.

Abstract

The mechanisms by which light interacts with ice and the impact of photoinduced reactions are central to our understanding of environmental, atmospheric, and astrophysical processes. However, a microscopic description of the photoproducts originating from ultraviolet (UV) absorption and emission processes has remained elusive. Here, we explore the photochemistry of ice using time-dependent hybrid density functional theory on various models of pristine and defective ice Ih. Our investigation of the excited state potential energy surface of the crystal shows that UV absorption can lead to the formation of hydronium ions, hydroxyl radicals, and excess electrons. One of the dominant mechanisms of decay from the excited to the ground-state involves the recombination of the electron with the hydroxyl radical yielding hydronium-hydroxide ion-pairs. We find that the details of this charge recombination process sensitively depend on the presence of defects in the lattice, such as vacancies and preexisting photoproducts. We also observe the formation of Bjerrum defects following UV absorption; we suggest that, together with hydroxide anions, they are likely responsible for prominent features experimentally detected in long UV exposure absorption spectra, remarkably red-shifted relative to short exposure spectra. Our results highlight the key role of defects in determining the onset of absorption and emission processes in ice.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました