気体と液体を混ぜる回転ローターのエネルギー損失メカニズムを解明~動力伝達装置、攪拌機などの効率向上に資する設計指針を提供~

2025-12-17 大阪大学

大阪大学、理化学研究所、東京大学の研究グループは、回転ローターによって気体と液体が混合される「ローター駆動型気液二相流」におけるエネルギー損失の最大化メカニズムを解明した。実験とスーパーコンピュータを用いた数値シミュレーションを融合し、損失が局所的にピークを示す現象に着目した結果、エネルギー損失はローターと気液界面の直接衝突だけでなく、界面波の共振に伴いローター周囲に生じる高圧・低圧領域の周期的な圧力変動が大きく寄与することが分かった。また、液体の充填率が高いほど損失最大化の効果は弱まり、回転速度と液面高さを適切に制御することで損失低減が可能であることを示した。本成果は、動力伝達装置や攪拌機など産業機器の省エネ化と高性能化に資する設計指針を提供する。

気体と液体を混ぜる回転ローターのエネルギー損失メカニズムを解明~動力伝達装置、攪拌機などの効率向上に資する設計指針を提供~

<関連情報>

静止円筒容器内の圧力損失支配型ロータによる気液二相流のトルク最大化機構 MECHANISMS OF TORQUE MAXIMIZATION IN GAS−LIQUID TWO-PHASE FLOWS DRIVEN BY A PRESSURE-LOSS-DOMINANT ROTOR IN A STATIONARY CYLINDRICAL CONTAINER

Mayu Kawamura,Kazuyasu Sugiyama,Tomoaki Watamura
Multiphase Science and Technology  Published: Nov 12 2025
DOI:10.1615/MultScienTechn.2025060620

RESUMO

This study investigates the mechanisms of torque maximization and the associated energy losses in gas−liquid two-phase flows driven by a pressure-loss-dominant rotor, employing both experiments and numerical simulations. The experiments measured the time-averaged torque under a range of rotational speeds and liquid filling rates. The results confirmed that local peaks in the time-averaged torque emerge depending on the interface height and the rotor speed, highlighting the sensitivity of torque behavior to flow conditions. Furthermore, detailed analyses were conducted using three-dimensional direct numerical simulations incorporating the volume-of-fluid (VOF) method, the multi-dimensional tangent of hyperbola interface capturing (MTHINC) method, and the boundary data immersion (BDI) method. These analyses revealed that, in addition to direct impacts between the rotor and the interface, significant pressure distribution changes develop near the rotor. In particular, high-pressure regions at the rotor front and low-pressure regions at its rear were observed. These pressure variations can substantially affect the torque characteristics. Moreover, it was suggested that these effects vary with the liquid filling rate and that changes in rotational speed also alter the relative contributions of these mechanisms. Overall, the results provide a deeper understanding of energy loss mechanisms in gas−liquid two-phase flow systems and are expected to offer valuable insights for their optimal design and operation, contributing to higher efficiency and performance in relevant engineering applications.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました