量子コンピュータの通信距離を200倍に拡大する新技術を開発(Breakthrough could connect quantum computers at 200 times longer distance)

2025-12-08 シカゴ大学

シカゴ大学の研究チームは、量子コンピュータ同士をつなぐ量子ネットワークの通信距離を200倍以上に伸ばせる可能性を示す技術的突破口を発表した。通常、量子情報を担う光子は光ファイバー中で急速に減衰するため、長距離伝送には量子中継器(量子リピーター)が不可欠だが、量子メモリの性能や信号劣化が大きな障壁となっていた。今回、研究者らは原子スケールの人工フォトニック構造新しい量子光学プロトコルを組み合わせ、光子と固体量子メモリの結合効率を大幅に向上させることに成功。実験では、従来より極めて低損失で長時間安定な光–量子メモリ変換が可能となり、量子ネットワークの長距離化への具体的道筋を提示した。この技術は、次世代インターネット基盤となる量子通信、量子セキュリティ、分散量子計算の実現に重要な前進であり、研究チームは「本成果は量子ネットワークの構築方法そのものを変える可能性がある」と述べている。

量子コンピュータの通信距離を200倍に拡大する新技術を開発(Breakthrough could connect quantum computers at 200 times longer distance)
By making rare-earth doped crystals using a technique called molecular-beam epitaxy rather than the traditional Czochralski method, the UChicago PME team built components atom by atom with remarkably long-lived quantum coherence.Photo by Jason Smith

<関連情報>

長寿命コヒーレンスを備えたデュアルエピタキシャル通信スピン光子インターフェース Dual epitaxial telecom spin-photon interfaces with long-lived coherence

Shobhit Gupta,Yizhong Huang,Shihan Liu,Yuxiang Pei,Qiang Gao,Shuolong Yang,Natasha Tomm,Richard J. Warburton & Tian Zhong
Nature Communications  Published:06 November 2025
DOI:https://doi.org/10.1038/s41467-025-64780-6

Abstract

Optically active solid-state spin qubits thrive as an appealing technology for quantum interconnects and quantum networks, thanks to their atomic size, scalable synthesis, long-lived coherence, and ability to coherently interface with flying qubits. Trivalent erbium dopants, in particular, emerge as an attractive candidate due to their emission in the telecom C band and shielded 4f intra-shell spin and optical transitions. Nevertheless, prevailing top-down architectures for rare-earth qubits and devices have not yet achieved simultaneous long optical and spin coherence, which is necessary for efficient long-distance quantum networks. Here, we demonstrate dual Er3+ telecom spin-photon interfaces in two distinct lattice symmetry sites within an epitaxial thin-film platform. By leveraging high matrix crystallinity, controlled proximity of dopants to surfaces, and exploiting host lattice symmetry, we simultaneously achieve kilohertz-level optical linewidth in a strongly symmetry-protected site, and erbium qubit spin coherence times exceeding 10 milliseconds. Additionally, we realize single-shot readout and microwave coherent control of erbium qubits in a fiber-integrated package, enabling rapid deployment and scalability. These advancements highlight the significant potential of high-quality rare-earth qubits and quantum memories assembled using a bottom-up method, paving the way for scalable development of quantum light-matter interfaces tailored for telecommunication quantum networks.

0404情報通信
ad
ad
Follow
ad
タイトルとURLをコピーしました