鉄系超伝導線で世界記録を達成(Researchers Achieve New World Record for Iron-based Superconducting Wires)

2025-09-10 中国科学院(CAS)

中国科学院・合肥物質科学研究院の馬衍偉教授らは、鉄系超伝導線材の性能で世界記録を達成した。鉄系超伝導体は高い臨界磁場や低コスト性から次世代の加速器・核融合・MRIなどで有望だが、脆い結晶格子に高密度の磁束ピン止め点を導入することが大きな課題だった。研究チームは「非対称応力場」戦略を採用し、押出加工で静水圧とせん断応力を同時制御して局所的な結晶すべりとねじれを誘導。さらに熱処理により転位を秩序化し、効率的なピン止めネットワークを形成した。その結果、臨界電流密度は10Tで1.5×10⁵から4.5×10⁵ A/cm²へ、30Tでは2.1×10⁵ A/cm²に達し従来の約5倍を記録。強磁場施設CHMFLのWM5水冷磁石が30T超での検証を支えた。

鉄系超伝導線で世界記録を達成(Researchers Achieve New World Record for Iron-based Superconducting Wires)
Transport current test under high magnetic fields of 25–33 T (Image by JIANG Donghui)

<関連情報>

脆性超伝導体における高密度転位の非対称応力制御による強力な渦糸ピンニング Asymmetric Stress Engineering of Dense Dislocations in Brittle Superconductors for Strong Vortex Pinning

Meng Han, Chiheng Dong, Chao Yao, Zhihao Zhang, Qinghua Zhang, Yue Gong, He Huang, Dongliang Gong, Dongliang Wang, Xianping Zhang, Fang Liu, Yuping Sun, Zengwei Zhu, Jianqi Li …
Advanced Materials  Published: 22 August 2025
DOI:https://doi.org/10.1002/adma.202513265

Abstract

Large lossless currents in high-temperature superconductors (HTS) critically rely on dense defects with suitable size and dimensionality to pin vortices, with dislocations being particularly effective due to their 1D geometry to interact extensively with vortex lines. However, in non-metallic compounds such as HTS with rigid lattices, conventional deformation methods typically lead to catastrophic fracture rather than dislocation-mediated plasticity, making it a persistent challenge to introduce dislocations at high density. Here, an asymmetric stress field strategy is proposed using extrusion to directly nucleate a high density of dislocations in HTS by activating shear-driven lattice slip and twisting under superimposed hydrostatic compression. As demonstrated in iron-based superconductors (IBS), atomic displacements of ≈1 Å trigger the formation of tilted dislocation lines with a density approaching that of metals. With further structural refinement, these dislocations serve as strong pinning centers that lead to a fivefold enhancement in the current-carrying capacity of IBS at 33 tesla (T), along with low anisotropy and a large irreversibility field. This work not only establishes a scalable route to engineer pinning landscapes in HTS but also offers a generalizable framework for manipulating dislocation structures in rigid crystalline systems.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました