水素燃料の低コスト化を実現する新技術(How UC Berkeley is improving the affordability of hydrogen fuel)

2025-11-24 カリフォルニア大学バークレー校(UC Berkeley)

カリフォルニア大学バークレー校の研究チームは、水素燃料の高コストを引き下げるため、低価格で高効率の水素製造技術と供給インフラの最適化に取り組んでいる。従来の水電解は高価な白金触媒や大量の電力を必要とし、コスト低減の妨げとなっていた。研究者らは、ニッケル・鉄など安価な金属をベースにした新規触媒材料を開発し、生成効率の向上と耐久性の大幅な改善を実証。また、発電所や工場から排出される余剰再エネ電力を利用した分散型水素製造モデルを構築し、輸送・貯蔵コストを削減できる可能性を示した。さらに、UC Berkeleyは政策研究者・経済学者と連携し、低コスト化シナリオを地域ごとにシミュレーションし、インフラ投資の優先順位を明確化している。研究チームは、これらの技術革新と政策設計により、輸送用水素を含むクリーンエネルギーへの移行が大きく加速すると期待している。

水素燃料の低コスト化を実現する新技術(How UC Berkeley is improving the affordability of hydrogen fuel)
Low-cost, durable electrolyzers (center) could use sustainable power from wind and solar to turn pure water into hydrogen gas that can fuel industrial plants as well as heavy vehicles.Yang Zhao/UC Berkeley

<関連情報>

界面工学による耐久性のある純水供給型陰イオン交換膜電解装置 Durable, pure water–fed, anion-exchange membrane electrolyzers through interphase engineering

Shujin Hou, Archana Sekar, Yang Zhao, Minkyoung Kwak, […] , and Shannon W. Boettcher
Science  Published:16 Oct 2025
DOI:https://doi.org/10.1126/science.adw7100

Editor’s summary

Anion-exchange membrane water electrolyzers represent one of the most economical methods for producing green hydrogen. However, their limited durability, particularly during operation with pure water, remains a major obstacle to widespread adoption. Hou et al. investigated ionomer binder design in greater depth and demonstrated that appropriately introduced inorganic additives can help to prevent oxidative degradation of the ionomer while preserving excellent mechanical integrity and ionic conductivity, ultimately extending device lifetime (see the Perspective by Kim). The enhanced stabilization originates from cross-linking between the additive and the ionomer and is broadly applicable across combinations of catalysts, additives, and ionomers. —Jack Huang

Abstract

Anion-exchange membrane water electrolyzers (AEMWEs) promise scalable, low-cost hydrogen production but are limited by the electrochemical instability of their anode ionomers. We report interphase engineering using inorganic-containing molecular additives that coassemble with ionomer, enabling pure water–fed AEMWEs to operate with a degradation rate <0.5 millivolt per hour at 2.0 amperes per square centimeter and 70°C—a >20-fold durability improvement. Analysis of different additives and ionomers shows that the stabilization mechanism involves cross-links between metal oxo/hydroxo oligomers and ionomers. Under operation, the inorganic additive enriches, forming an interphase near the water-oxidation catalyst that passivates the anode ionomer against continuous degradation while maintaining mechanical integrity and hydroxide conductivity. This additive-based interphase-engineering strategy provides a path to durable AEMWEs that operate without supporting electrolytes and is adaptable across diverse catalysts and ionomers for electrochemical technologies.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました