オートミールの健康性と耐性向上を導く遺伝子アトラスを作成(New gene atlas paves way for healthier, more resilient oats)

2025-11-03 英国研究イノベーション機構(UKRI)

Web要約 の発言:
国際研究コンソーシアム「PanOat」は、33種のエンバク(オーツ)ゲノムを完全解読し、過去最大規模の「オーツ遺伝子アトラス」を構築した。英国アベリストウィス大学IBERSを中心に、ドイツ・ライプニッツ植物遺伝学研究所やカナダ農業・農食品省などが参加。解析では9,000以上の野生種・栽培種を比較し、複数の独立した家畜化イベントと染色体構造の違いによる交配障壁を明らかにした。IBERSのチームは3種の完全ゲノムを提供し、BBSRC(英国生物科学研究会議)の支援を受けた。新たなパンゲノムとパン転写体データは、遺伝子発現制御の多様性を解明し、気候変動に適応する高収量・高栄養価オーツの育種を加速させる。特に冬季オーツの耐寒性改良に有効とされる。成果は『Nature』および『Nature Communications』に掲載され、食料安全保障と健康的食生活を支える革新的バイオサイエンスの一例として評価されている。

<関連情報>

六倍体オート麦のパンゲノムとパントランスクリプトーム A pangenome and pantranscriptome of hexaploid oat

Raz Avni,Nadia Kamal,Lidija Bitz,Eric N. Jellen,Wubishet A. Bekele,Tefera T. Angessa,Petri Auvinen,Oliver Bitz,Brian Boyle,Francisco J. Canales,Craig H. Carlson,Brett Chapman,Harmeet Singh Chawla,Yutang Chen,Dario Copetti,Samara Correia de Lemos,Viet Dang,Steven R. Eichten,Kathy Esvelt Klos,Amit M. Fenn,Anne Fiebig,Yong-Bi Fu,Heidrun Gundlach,Rajeev Gupta,… Martin Mascher
Nature  Published:29 October 2025
DOI:https://doi.org/10.1038/s41586-025-09676-7

オートミールの健康性と耐性向上を導く遺伝子アトラスを作成(New gene atlas paves way for healthier, more resilient oats)

Abstract

Oat grain is a traditional human food that is rich in dietary fibre and contributes to improved human health1,2. Interest in the crop has surged in recent years owing to its use as the basis for plant-based milk analogues3. Oat is an allohexaploid with a large, repeat-rich genome that was shaped by subgenome exchanges over evolutionary timescales4. In contrast to many other cereal species, genomic research in oat is still at an early stage, and surveys of structural genome diversity and gene expression variability are scarce. Here we present annotated chromosome-scale sequence assemblies of 33 wild and domesticated oat lines, along with an atlas of gene expression across 6 tissues of different developmental stages in 23 of these lines. We construct an atlas of gene-expression diversity across subgenomes, accessions and tissues. Gene loss in the hexaploid is accompanied by compensatory upregulation of the remaining homeologues, but this process is constrained by subgenome divergence. Chromosomal rearrangements have substantially affected recent oat breeding. A large pericentric inversion associated with early flowering explains distorted segregation on chromosome 7D and a homeologous sequence exchange between chromosomes 2A and 2C in a semi-dwarf mutant has risen to prominence in Australian elite varieties. The oat pangenome will promote the adoption of genomic approaches to understanding the evolution and adaptation of domesticated oats and will accelerate their improvement.

 

野生および栽培オート麦のゲノム集団構造は染色体再編成の兆候を明らかにする Global genomic population structure of wild and cultivated oat reveals signatures of chromosome rearrangements

Wubishet A. Bekele,Raz Avni,Clayton L. Birkett,Asuka Itaya,Charlene P. Wight,Justin Bellavance,Sophie Brodführer,Francisco J. Canales,Craig H. Carlson,Anne Fiebig,Yongle Li,Steve Michel,Raja Sekhar Nandety,David J. Waring,Juan D. Arbelaez,Aaron D. Beattie,Melanie Caffe,Isabel A. del Blanco,Jason D. Fiedler,Rajeev Gupta,Lucia Gutierrez,John C. Harris,Stephen A. Harrison,Matthias H. Herrmann,… Nicholas A. Tinke
Nature Communications  Published:29 October 2025
DOI:https://doi.org/10.1038/s41467-025-57895-3

Abstract

The genus Avena consists of approximately 30 wild and cultivated oat species. Cultivated oat is an important food crop, yet the broader genetic diversity within the Avena gene pool remains underexplored and underexploited. Here, we characterize over 9000 wild and cultivated hexaploid oat accessions of global origin using genotyping-by-sequencing and explore population structure using multidimensional scaling and population-based clustering methods. We also conduct analyses to reveal chromosome regions associated with local adaptation, sometimes resulting from large-scale chromosome rearrangements. We report four distinct genetic populations within the wild species A. sterilis, a distinct population of cultivated A. byzantina, and multiple populations within cultivated A. sativa. Some chromosome regions associated with local adaptation are also associated with confirmed structural rearrangements on chromosomes 1A, 1C, 3C, 4C, and 7D. This work provides evidence suggesting multiple polyploid origins, multiple domestications, and/or reproductive barriers amongst Avena populations caused by differential chromosome structure.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました