レーザー溶接の欠陥を説明する新AIシステムを開発(Doing a lot with a little: New AI system helps explain laser welding defects)

2025-09-22 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、AIと既存研究データを活用してレーザー溶接欠陥を説明する新手法を開発しました。従来は膨大な数値データが必要でしたが、新手法では文献中のテキストデータを数値化し、少数の実験データと組み合わせて数値方程式を自動生成できます。これにより「ハンピング」など高速溶接時の典型的欠陥を説明可能となり、溶接条件の最適化が加速。10本の方程式を1分で導出でき、従来の手作業に比べ効率が大幅に向上しました。今後はアディティブ・マニュファクチャリングなど他の製造プロセスへの応用も期待されます。本成果はInternational Journal of Machine Tools and Manufactureに掲載されました。

<関連情報>

大規模言語モデルを用いた高速レーザー溶接の物理方程式の導出 Derivation of physical equations for high-speed laser welding using large language models

Kyubok Lee, Zhengxiao Yu, Zen-Hao Lai, Peihao Geng, Teresa J. Rinker, Changbai Tan, Blair Carlson, Siguang Xu, Jingjing Li
International Journal of Machine Tools and Manufacture  Available online: 20 August 2025
DOI:https://doi.org/10.1016/j.ijmachtools.2025.104320

Graphical abstract

レーザー溶接の欠陥を説明する新AIシステムを開発(Doing a lot with a little: New AI system helps explain laser welding defects)

Highlights

  • A novel framework bridging sparse data and text to infer governing physical equations.
  • Reveals humping as an imbalance where inertial effects dominate over capillary stabilization.
  • Enables physical law discovery by integrating text and data with LLMs.
  • Identify simple and interpretable equations for complex laser welding dynamics.

Abstract

It is challenging to formulate complex physical phenomena that occur in a manufacturing process, particularly when the available data are limited, rendering conventional data-driven approaches ineffective. This study aims to predict humping onset in high-speed laser welding by introducing a novel framework, namely text-to-equations generative pre-trained transformer (T2EGPT). This method leverages the capabilities of large language models (LLMs), in combination with sparse experimental data and enriched literature data, to derive an interpretable and generalizable equation for predicting humping initiation. By capturing key correlations among physical parameters, T2EGPT generates a compact and dimensionless expression that accurately predicts hump formation. The equation reveals that humping arises from the interplay between inertia-driven backward melt flow and capillary-driven surface stabilization, where inertial forces drive molten metal backward and capillary forces resist surface deformation. Compared to traditional data-driven models, T2EGPT demonstrates enhanced predictive accuracy and cross-material transferability. More broadly, this study highlights the potential of LLMs to integrate textual information with data-driven discovery, enabling the extraction of physical laws in data-scarce scientific domains.

0107工場自動化及び産業機械
ad
ad
Follow
ad
タイトルとURLをコピーしました