UCRの計算機科学者が米国のサイバーセキュリティ強化に貢献(UCR computer scientists boost US cybersecurity)

2025-09-18 カリフォルニア大学リバーサイド校(UCR)

カリフォルニア大学リバーサイド校の研究チームは、連邦助成を受け、米国のサイバーセキュリティ強化に資する革新的技術を発表した。AI学習におけるプライバシー保護手法が「勾配反転攻撃」に脆弱であることを実証し、患者画像などの漏洩リスクを指摘。また、ファイアウォール設定ミスにより世界で200万超の隠れたサービスが露出していることを発見し、攻撃対象領域の拡大を明らかにした。さらに、DNSサーバーを狙う「サイドチャネル攻撃」を自動検出する新ツールSCADを開発し、従来困難だった脆弱性発見を1日で可能にした。これらの成果はAI、ネットワーク、国家インフラを守る基盤強化につながり、次世代の研究者育成にも寄与する。

<関連情報>

パラメータ効率的な微調整に対する勾配反転攻撃 Gradient Inversion Attacks on Parameter-Efficient Fine-Tuning

Hasin Us Sami, Swapneel Sen, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy, Basak Guler
arXiv  Submitted on 4 Jun 2025
DOI:https://doi.org/10.48550/arXiv.2506.04453

UCRの計算機科学者が米国のサイバーセキュリティ強化に貢献(UCR computer scientists boost US cybersecurity)

Abstract

Federated learning (FL) allows multiple data-owners to collaboratively train machine learning models by exchanging local gradients, while keeping their private data on-device. To simultaneously enhance privacy and training efficiency, recently parameter-efficient fine-tuning (PEFT) of large-scale pretrained models has gained substantial attention in FL. While keeping a pretrained (backbone) model frozen, each user fine-tunes only a few lightweight modules to be used in conjunction, to fit specific downstream applications. Accordingly, only the gradients with respect to these lightweight modules are shared with the server. In this work, we investigate how the privacy of the fine-tuning data of the users can be compromised via a malicious design of the pretrained model and trainable adapter modules. We demonstrate gradient inversion attacks on a popular PEFT mechanism, the adapter, which allow an attacker to reconstruct local data samples of a target user, using only the accessible adapter gradients. Via extensive experiments, we demonstrate that a large batch of fine-tuning images can be retrieved with high fidelity. Our attack highlights the need for privacy-preserving mechanisms for PEFT, while opening up several future directions.

 

地平線の彼方:誤設定されたファイアウォール背後のホストとサービスの解明 Beyond the Horizon: Uncovering Hosts and Services Behind Misconfigured Firewalls

Qing Deng; Juefei Pu; Zhaowei Tan; Zhiyun Qian; Srikanth V. Krishnamurthy
2025 IEEE Symposium on Security and Privacy  Date Added to IEEE Xplore: 16 June 2025
DOI:https://doi.org/10.1109/SP61157.2025.00164

Abstract:

Public IP addresses can expose devices and services to risks such as port scanning and subsequent cyberattacks. Therefore, firewalls are extensively deployed and play a critical role in enforcing security policies and preventing unauthorized access. However, vulnerabilities can allow firewalls to be by-passed, effectively nullifying the protection. In this paper, we present the first comprehensive study of a previously understudied attack surface: firewall misconfigurations that inadvertently expose protected services to the public Internet. Specifically, we demonstrate flawed firewall rules that allow inbound connections from special source ports to bypass the firewall, and explore the prevalence and security implications thereof. To this end, we scan the IPv4 space for 15 commonly high-risk TCP and UDP services from two special source ports. Our measurement reveals the widespread existence of such misconfigurations and identified over 2,000,000 otherwise unreachable services spread over 15,837 autonomous systems, expanding the “observable Internet” for various protocols by up to 12.60%. More importantly, the affected services generally exhibit higher security risks than the publicly accessible ones, like outdated software versions and weak configurations. Despite the severity of this vulnerability, our honeypot experiment provides little evidence of active exploitation in the wild. Our findings offer insights for better security posture and network administration, helping researchers and organizations anticipate and mitigate potential cyber threats emanating from the Internet.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました