科学者たちが人の皮膚に似た布でロボットに触覚を与える(Scientists give robots a sense of touch with fabric that mimics human skin)

2025-07-31 バッファロー大学 (UB)

バッファロー大学の研究チームは、触覚機能を備えた柔軟な電子テキスタイル(e-textile)センサーを開発した。このセンサーは、圧力や滑りを高精度かつ高速(0.76~38ミリ秒)で検出可能で、人間の皮膚に近い反応を示す。3Dプリントしたロボット指に装着すると、物体の滑りを感知し、瞬時に把持力を自動調整する機能を実現。銅片を使った実験でも、滑り検知による制御性能が確認された。この技術は製造現場や医療用ロボット、義肢など多分野への応用が期待されている。成果は『Nature Communications』に掲載された。

<関連情報>

滑り駆動型バイオニック触覚センシングシステム:動的DC発電機を統合したE-テキスタイルを用いた器用なロボット操作 Slip-actuated bionic tactile sensing system with dynamic DC generator integrated E-textile for dexterous robotic manipulation

Vashin Gautham,Ashutosh Panpalia,Hamid Manouchehri,Krushang Khimjibhai Gabani,Vinoop Anil,Shakunthala Yerneni,Rohit Thakar,Aayush Nayyar,Mandar Anil Payare,Emily Jorgensen,Ruizhe Yang,Ehsan Esfahani & Jun Liu
Nature Communications  Published:30 July 2025
DOI:https://doi.org/10.1038/s41467-025-61843-6

科学者たちが人の皮膚に似た布でロボットに触覚を与える(Scientists give robots a sense of touch with fabric that mimics human skin)

Abstract

Dexterous manipulation in robotics requires coordinated sensing, signal processing, and actuation for real-time, precise object control. Despite advances, the current artificial tactile sensory system lacks the proficiency of the human sensory system in detecting multidirectional forces and multimodal stimuli. To address this limitation, we present a bio-inspired “slip-actuated” tactile sensing system, incorporating dynamic direct-current generator into stretchable electronic textile. This self-powered bionic tactile sensing system operates in conjunction with a normal force sensor, paralleling the functions of human rapid-adapting and slow-adapting mechanoreceptors, respectively. Furthermore, we tailor and integrate the bionic tactile sensing system with robotic fingers, creating a bionic design that mimics human skin and skeleton with mechanoreceptors. By embedding this system into the feedback loop of robotic fingers, we are able to achieve fast slip and grasp monitoring, as well as effective object manipulation. Moreover, we perform quantitative analysis based on Hertzian contact mechanics to fundamentally understand the dependency of output on force and velocity in our sensor system. The results of this work provide an artificial tactile sensing mechanism for AI-driven smart robotics with human-inspired tactile sensing capabilities for future manufacturing, healthcare, and human-machine interaction.

0110情報・精密機器
ad
ad
Follow
ad
タイトルとURLをコピーしました