AIが新素材の実用性を予測(AI tool predicts real-world applications for newly discovered materials)

2005-07-23 トロント大学(U of T)

トロント大学工学部の研究チームは、新たに合成された材料の用途を即座に予測するAIツールを開発した。Nature Communicationsに発表されたこの研究は、多孔性材料である金属有機構造体(MOF)を対象に、用途特定を加速することを目的とする。博士課程のサルタージ・カーン氏が開発したマルチモーダルAIは、前駆体化学物質とX線回折パターン(PXRD)など、合成直後のデータを活用して性能を予測。過去のMOF研究では、別用途で開発された材料が後に炭素回収に最適と判明した例もあるが、AIによりその時間差を縮小可能に。AIは「時空間実験」にも成功し、今後は自律型実験室と連携し材料探索を加速させる計画だ。

AIが新素材の実用性を予測(AI tool predicts real-world applications for newly discovered materials)
<関連情報>

マルチモーダル機械学習を用いて有機金属骨格合成を応用につなげる Connecting metal-organic framework synthesis to applications using multimodal machine learning

Sartaaj Takrim Khan & Seyed Mohamad Moosavi
Nature Communications  Published:01 July 2025
DOI:https://doi.org/10.1038/s41467-025-60796-0

Fig. 1

Abstract

Every year, researchers create hundreds of thousands of new materials, each with unique structures and properties. For example, over 5000 new metal-organic frameworks (MOFs) were reported in the past year alone. While these materials are often synthesized for specific applications, they may have potential uses in entirely different domains. However, linking these new materials to their best applications remains a significant challenge. In this study, we demonstrate a multimodal approach that uses the information available as soon as a MOF is synthesized, specifically its powder X-ray diffraction pattern (PXRD) and the chemicals used in its synthesis, to predict its potential properties and uses. By self-supervised pretraining of this model on crystal structures accessible from MOF databases, our model achieves accurate predictions for various properties, across pore structure, chemistry-reliant, and quantum-chemical properties, even when small data is available. We further assess the robustness of this method in the presence of experimental measurement imperfections. Utilizing this approach, we create a synthesis-to-application map for MOFs, offering insights into optimal material classes for diverse applications. Finally, by augmenting this model with a recommendation system, we identify promising MOFs for applications that are different from the originally reported applications. We provide this tool as an open source code and a web app to accelerate the matching of new materials with their potential industrial applications.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました