柔らかい物質と堅い物質を混ぜると強靭な物質ができる理由を理論的・数値的に解明~多様な強靭材料開発への貢献に期待~

ad

2025-07-08 北海道大学,富山大学

北海道大学と富山大学の研究グループは、柔らかい物質と堅い物質を混合することで「堅さ」と「壊れにくさ」を両立する強靭な複合材料が得られる理由を、線形弾性モデルと数値シミュレーションにより解明しました。混合の比率によって強靭性が最大化されるポイントを明確にし、理論的な「強靭性地形」を構築。実験無しでも、どの比で材料を配合すれば最も丈夫な複合体が得られるかが予測可能になりました。この成果により、人工軟骨や高性能ゴム、セラミックスなどの開発プロセスが飛躍的に簡略化され、再生医療や工業材料の設計効率向上が期待されます。研究成果はPNASに掲載され、ソフト-ハード複合材料設計の新たな設計指針となる理論基盤を提供しました。

柔らかい物質と堅い物質を混ぜると強靭な物質ができる理由を理論的・数値的に解明~多様な強靭材料開発への貢献に期待~
(A)混合材料の破壊計算に用いるサンプル形状。
(B)混合材料における柔らかい要素の体積分率(φs)変化による応力―歪曲線の変化。柔らかい要素の体積分率が0.7の混合材料が延性破壊をしている。

<関連情報>

ソフト-ハード複合材料における基本的な強化メカニズム:最小限のフレームワークからの洞察 Fundamental toughening landscape in soft–hard composites: Insights from a minimal framework

Fucheng Tian, Katsuhiko Sato, Yong Zheng, +1 , and Jian Ping Gong
Proceedings of the National Academy of Sciences
DOI:https://doi.org/10.1073/pnas.2506071122

Significance

Nature presents a grand blueprint for material design by organizing soft and hard components into sophisticated multiscale and hierarchical architectures. Despite unprecedented progress, the most fundamental toughening mechanisms of soft–hard composite systems are yet to be fully understood, as most efforts have been devoted to emulating their complicated nonlinearities and structures. This work shows that a minimal soft–hard composite framework can achieve a transition from brittleness to toughness, yielding toughened composites that transcend their constituent phases. The findings unfold the fundamental toughening mechanisms of such systems and offer theoretical support for designing tougher materials.

Abstract

Soft–hard composite strategy is a highly general yet powerful approach to overcome the inherent trade-off between strength and toughness in material design. However, the underlying toughening mechanisms, veiled by nonlinearities and complex network interactions, remains unclear. Here, we employ a three-dimensional soft–hard composite (SH-com) framework by arranging randomly distributed linear-elastic soft and hard elements to explore the toughening mechanisms of soft–hard composites, while shielding the influence of complex nonlinearities and network architectures. Key features observed in soft–hard composites, including mechanical hysteresis, sacrificial bond-driven toughening, and brittle-to-ductile (BTD) transitions, are successfully reproduced, suggesting that the simplest model captures the essence of toughening in soft–hard composites. Visualization of internal fracture reveals distinct fracture patterns associated with the BTD transition, while numerical and theoretical analyses elucidate its mechanical origins. Furthermore, we identify an optimal toughening composition governed by a unified scaling relation linked to the fracture toughness ratio between soft and hard components. A fundamental toughening phase diagram is also established in terms of strength and toughness. This work sheds light on the underlying toughening landscape of soft–hard composite systems.

0102材料力学
ad
ad
Follow
ad
タイトルとURLをコピーしました