もみ殻と鉱山副産物から高耐久性燃料電池触媒を開発~農業・鉱山副産物の再資源化で持続可能な電池技術へ~

ad

2025-07-03 東北大学

もみ殻と鉱山副産物から高耐久性燃料電池触媒を開発~農業・鉱山副産物の再資源化で持続可能な電池技術へ~

東北大学などの研究チームは、農業廃棄物のもみ殻と鉱山副産物のパイライト(FeS₂)から、高耐久で白金代替となる燃料電池用触媒を開発しました。従来除去対象だったもみ殻中の非晶質シリカが、鉄と結合することで触媒の安定性向上に寄与。酸性環境下でも高性能を発揮し、白金に依存しない持続可能な電池材料として注目されます。再生可能エネルギーの貯蔵や希少金属の低減に貢献し、廃棄物活用による低コスト化が期待されます。

<関連情報>

酸性からアルカリ性媒体での酸素還元反応のための、未使用天然資源からの高活性かつ安定したFe-N 4触媒 Highly active and stable Fe-N4 catalyst from unused natural resources for oxygen reduction reaction in acidic to alkaline medium

Edwin Osebe Nyangau, Hiroya Abe, Kazutoshi Haga, Chie Ooka, Kenji Hayashida, Naoka Nagamura, Kotaro Takeyasu, Masaru Watanabe, Yuta Nakayasu
Journal of Power Sources  Available online: 30 June 2025
DOI:https://doi.org/10.1016/j.jpowsour.2025.237784

Highlights

  • Fe–N4 site stabilization gives 17 % higher stability than Pt/C in acidic media.
  • Catalyst synthesized from rice husks and mining waste for ORR applications.
  • Unique fifth coordination forms between Fe–N4 and amorphous SiO2 from rice husks.
  • Delivers 160 mW cm−2 in Zn–air batteries, outperforming Pt/C at 120 mW cm−2.

Abstract

Iron–nitrogen–carbon (Fe–N–C) catalysts with Fe–N4 coordination are promising alternatives to platinum-based materials for the oxygen reduction reaction (ORR), yet their instability in acidic media limits practical applications. Herein, we report a sustainable Fe–N–C catalyst (RH-Fe-N) synthesized from rice husks and pyrite, serving as carbon and iron sources, respectively. This approach eliminates the need for complex precursors such as metal–organic frameworks, using a simple three-step carbonization method including hydrothermal carbonization. The resulting catalyst incorporates Fe atoms into a carbon matrix with self-doped amorphous SiO2 from rice husks. Spectroscopic and theoretical analysis reveals a unique fifth Fe–O coordination within the SiO2 matrix, enhancing site stability and ORR activity. In Zn–air battery applications, RH-Fe-N achieves a peak power density of 160 mW cm−2, outperforming commercial Pt/C (40 wt%) at 120 mW cm−2, with a higher open-circuit voltage (1.50 V vs. 1.40 V for Pt/C). The catalyst also demonstrates superior durability, with 17 % and 16 % higher stability than Pt/C in acidic and neutral conditions, respectively. This work provides a low-cost, scalable, and eco-friendly strategy for developing high-performance ORR catalysts across all pH ranges, contributing to sustainable energy generation and circular economy goals.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました