多孔性結晶中のNaイオンの高速拡散機構を新たに提唱~次世代ナトリウムイオン電池の新規正極の開発を加速~

2025-06-30 東京科学大学

東京科学大学と早稲田大学の研究チームは、スーパーコンピュータ「富岳」を用いた第一原理分子動力学計算により、ナトリウムイオン電池(Naイオン電池)用正極材料「プルシアンブルー(PB)」中でNa+が室温以下でも高速拡散できる新たなメカニズムを解明した。結晶の動的な無ひずみ性が拡散促進の鍵であり、この知見はNa電池の高性能化と長寿命化に貢献する。Li+やK+との比較も行い、PBの優位性を理論的に示した。

多孔性結晶中のNaイオンの高速拡散機構を新たに提唱~次世代ナトリウムイオン電池の新規正極の開発を加速~図1.(a)イオン二次電池の模式図。負極から正極へと、リチウムイオンなどのプラスの電荷を帯びたイオン(濃いピンク色の丸)が移動することで、電流が流れる。(b)正極材料の一種であるプルシアンブルー(PB)結晶。(c)PB結晶の孔の中で拡散するA+(= Li+、Na+、K+)イオンとそのサイズの比。

<関連情報>

無水Fe系プルシアンブルー正極におけるLi+、Na+、K+イオンの相異なる拡散機構 Dissimilar Diffusion Mechanisms of Li+, Na+, and K+ Ions in Anhydrous Fe-Based Prussian Blue Cathode

Dan Ito,Seong-Hoon Jang,Hideo Ando,Toshiyuki Momma,and Yoshitaka Tateyama
Journal of the American Chemical Society  Published June 30, 2025
DOI:https://doi.org/10.1021/jacs.5c05274

Abstract

Prussian Blue (PB, AFe[Fe(CN)6], where A = Li, Na, K, etc.), a three-dimensional (3D) metal–organic framework (MOF), emerges as a promising cathode material, particularly for next-generation Na- and K-ion batteries. However, the microscopic occupation positions and diffusion behaviors of A+ ions in the unit cell have been inadequately elucidated. This study systematically compares the diffusion mechanisms of multiple Li+, Na+, and K+ ions using density functional theory calculations. We clarified the new stable occupation sites for Li+ and Na+ ions: the face-centered (FC) 24d and off-FC 48g sites, respectively. The smaller ionic radii of Li+ and Na+ ions contribute to their enhanced Coulombic attractions from CN anions. Li+ ions are more self-diffusive than Na+ at high temperatures; however, at room temperature, Na+ ions have comparable self-diffusivities and lower activation energies than Li+ ions. This is attributed to the smaller tilting of [Fe(CN)6]-octahedra induced by Na+ ions’ transfers, resulting in a shallower potential energy landscape than for Li+ ions. These results demonstrated that the anhydrous Fe-based pristine PB crystal is an excellent Na+-ion conductor. Meanwhile, K+ ions prefer the conventional body center (8c site) and exhibit negligible self-diffusivities without anionic defects. Surprisingly, they show anisotropic diffusion along anion vacancy channels in the defective crystal, in contrast with the isotropic pathways for Li+ and Na+ ions. These findings update the fundamental chemistry of the diffusivity correlation with the electronic orbital interactions and framework distortion within general MOF materials.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました