「疲労」が材料を強くする~き裂“発生”の抑制がカギ 高強度鋼の疲労限度を2倍化する新手法を開発~

ad

2025-06-30 物質・材料研究機構,科学技術振興機構

NIMSは、高強度鋼にあらかじめ疲労変形を与える「予疲労トレーニング」により、疲労限度を2倍に高める新手法を開発した。従来は引張強度が高すぎると疲労限度が頭打ちになるとされていたが、本研究では、結晶粒界の弾性ミスフィットを調整することで、疲労き裂の“発生”自体を抑制できることを発見。焼き戻し処理と異なり引張強度を維持できるため、超高強度材料への応用が期待される。

「疲労」が材料を強くする~き裂“発生”の抑制がカギ 高強度鋼の疲労限度を2倍化する新手法を開発~
図: 鉄鋼材料の引張強度と疲労限度の相関

<関連情報>

クラック・エンブリオ・エンジニアリングによる高強度マルテンサイト鋼の疲労限界倍増-サイクリック・トレーニング駆動の自己最適化 Fatigue Limit Doubling in High-Strength Martensitic Steel through Crack Embryo Engineering–Cyclic-Training-Driven Self-Optimization

Kazuho Okada, Kaneaki Tsuzaki, Eri Nakagawa, Akinobu Shibata
Advanced Science  Published: 29 June 2025
DOI:https://doi.org/10.1002/advs.202504165

Abstract

Achieving superior fracture resistance under cyclic loading–specifically, a high-fatigue limit–is crucial for ensuring structural safety and supporting a sustainable society. This study demonstrates a breakthrough in overcoming the conventional fatigue limit ceiling in high-strength as-quenched martensitic steel by enhancing resistance to crack initiation. In the as-heat-treated state, high-angle boundaries with large elastic misfits and plastic incompatibility served as precursory sites for intrusions/extrusions (these are defined as “crack embryos”), eventually leading to fatigue crack initiation. Remarkably, after the pre-fatigue training, surface crack initiation is entirely suppressed, doubling the fatigue limit with minimal change in tensile strength. A novel concept of “crack embryo engineering” is introduced, which targets the prevention of crack embryo formation by extracting intrinsic microstructural self-optimization against fatigue deformation: macroscopic hardness homogenization and selective nano-hardening of the precursory sites. This self-optimization strategy offers a versatile approach to improving fatigue limit in general steels, providing an effective alternative to tempering heat treatment that inevitably sacrifices tensile strength.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました